
COMP 4108A Assignment 2

Darnell Foster(101229310)

Due Date: Oct 15, 2024

1

Part A - Setup (7 marks)

1. Download the rootkit framework code for this assignment, available here, to your VM using
the wget command. THE USERNAME AND PASSWORD CAN BE FOUND IN A POST
IN THE ”Announcements” DIRECTORY ON BRIGHTSPACE.

2. Run sudo bash to give yourself a bash shell with root privileges. We’ll pretend that you got
this from the race condition in A1. For most of this assignment you’re going to be switching
between a root user and a normal user, so I recommend you keep two windows open (the
gurus might want to try the screen tool, or a terminal multiplexer with a somewhat steep
learning curve).

3. Find the address of the sys call table symbol inspecting /proc/kallsyms.

The address of the syscall table is ffffffffb08013c0. The command I used was:
$cat /proc/kallsyms | grep sys_call_table

I chose this command because its faster than reading through the whole table.

2

4. Edit the rootkit.c file to provide the right symbol as an argument to kallsyms lookup name()
in the get syscall table bf() function. It should the same as the symbol you found in Q3.

I edited the get_syscall_table_bf() function from the root file. $nano root inside
the a2 directory.

Before:

After:

3

5. Confirm you can build the rootkit framework by running make. You can safely ignore the
warning about defined but not used variables, as you will be fixing that as you complete the
assignment.

I ran $make while inside the a2 directory.

6. Confirm you can insert the rootkit module by running ./insert.sh as root. Ensure it was
inserted by running lsmod and by checking the syslog.

I ran the command $.\insert.sh while inside the a2 directory as the root user. I then
checked it using $lsmod.

I checked the syslog file by running the command $cat /var/log/syslog.

4

7. Confirm you can remove the rootkit module by running .eject.sh as root. Ensure it was
ejected by running lsmod and by checking the syslog.

I ran the command $.\eject.sh while inside the a2 directory as the root user. I then checked
it using $lsmod and $cat /var/log/syslog.

5

8. Finish the rootkit code so that the example open() hook works. Look for the TODO markers.
Show a snippet of the syslog output it generates once loaded.

Based on the comments I added the following line to the init_rootkit() function:
i) unprotect_memory()

ii) __sys_call_table[__NR_openat] = (unsigned long) new_openat;

ii) protext_memory()

I then tested it by using the cat command on a text file I made called text.txt. I then greped
for this openat() syscall inside the syslogfile.

6

9. Choose 2 principles from Chapter 1.7 of the course textbook and explain how they can help
mitigate rookits. The way in which the principle helps could be with mitigating rootkit ef-
fectiveness or delivery. Please clearly state any assumptions you make about type of rootkit
or delivery if necessary.

(a) EVIDENCE-PRODUCTION: (Usermode and Kernel mode Rootkits)

By using tools and monitoring system events and logs you can pick up on the remnants
of malicious code and its effect on the system. You can then track down the source and
remove the rootkit.

(b) ISOLATED-COMPARTMENTS: (usermode rootkits)

If someone where to make a library that has a rootkit inside it and you create a program
that’s using this library - during dynamic linking on runtime you’d be introducing the
rootkit to your code. Lets say the shared library was altered by the adversary taking
advantage of a race condition and escalating privileges. By compartmentalizing system
components and not letting cross communication you could prevent this escalation of
privileges.

7

Part B - Backdoor (15 Marks)

1. [5 Marks] Write a new hook for the execve syscall using the framework code from Part
A. Consult the execve man page to learn the details and function signature of execve(). You
will need to know which __NR_X define is used to find the offset in sys_call_table to hook
for execve (where X will vary syscall to syscall). You might find Bootlin elixir Cross
Referencer - unistd 64.h useful in this regard.

The hook should print the name of all files being executed, and the effective UID of the user
executing the file to syslog using printk. Example output:

Jan 28 20:49:17 COMP4108-A2 kernel: [81423.749198] Executing /usr/bin/tail

Jan 28 20:49:17 COMP4108-A2 kernel: [81423.749200] Effective UID 0

Jan 28 20:49:19 COMP4108-A2 kernel: [81425.950497] Executing /bin/ls

Jan 28 20:49:19 COMP4108-A2 kernel: [81425.950499] Effective UID 1000

The current_* macros defined in the Bootlin elixir Cross Referencer - cred.h include will
help you get the information you need to include in your printk message.

Hint:
You may also find the syscall man page to be helpful with understanding how to access the
arguments passed to the syscalls we are hooking. Using the command uname -a we can find
the corresponding argument registers for x86-64 by looking at the second table in the Archi-
tecture Calling Conventions section, and compare this to how the openat() hook code is able
to access the pathname argument.

8

https://linux.die.net/man/2/execve
https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h
https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/cred.h
https://www.man7.org/linux/man-pages/man2/syscall.2.html

B1 Answer

First I followed the comments and created a variable to store the original execve function
and added the following lines to the necessary locations:(I found the symbol __NR_execve
from the Bootlin elixir Cross Referencer - cred.h).

i) original_execve = (t_syscall)__sys_call_table[__NR_execve];

ii) __sys_call_table[__NR_execve] = (unsigned long) new_execve;

Then I created a new function with the following signature:

asmlinkage int new_execve(const struct pt_regs* regs)

I used this function to hook the sys calls for execve. The structure of this function followed
the new_openat() function. By checking execve man page I found the function signature for
execve is as follows:

int execve(const char *filename, char *const argv[], char *const envp[]);

In opennat(), filename is the 2nd arguemnt passed, unlike in execve() filename is the first
argument. To accommodate for this when retrieving the filename. I used $uname -a to find
the archeticure of the OS, which is x86-64, then found the corresponding argument registers
for x86-64. I found this table by looking in the syscall manpage under the Architecture Calling
Conventions section.

Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7 Notes

--

[...]

x86-64 rdi rsi rdx r10 r8 r9 -

[...]

I found di is the register used to pass the first argument of the syscall. Which I used in the
following line of code:

if (strncpy_from_user(filename, (void*) regs->di, 4096) < 0){

I then used the macro: current_euid().val, (I found from Bootlin elixir Cross Referencer
- Cred.h) to print the effective UID.

9

Execve Function:

Output:

10

2. [10 Marks] Modify your hook code so that when the effective UID of the user executing an
executable is equal to the value of the root_uid parameter, they are given uid/euid 0 (i.e.
root privs). The root_uid parameter must be provided via the insmod command in insert.sh.
Note that the root_uid parameter should be set to your user’s UID to get root, not root’s
UID. You will need to add this behaviour.

In order to get full marks you must demonstrate the module working. Set the root_uid

param in insert.sh equal to your user’s UID, and provide the input/output from:

a. Building the module code

b. Runing whoami as a normal user in one terminal

c. Inserting the module as a root user by running ./insert.sh in a second terminal.

d. In your normal user terminal running whoami again and being told you are root.

Example output (from normal user term):

comp4108@NodeX:/A2/code/rootkit_framework$ whoami

comp4108

comp4108@NodeX:/A2/code/rootkit_framework$ whoami

root

11

B2 Answer

First I edited the insert.sh file by adding the The root_uid using the insmod command as
follows:

Then I added the following lines to the rootkit to be able to retrieve the root_uid value:

Then Inside the new_execve function, I used the functions prepare_kernel_cred() and
commit_creds() which I read about in the header and source code from Bootlin Elixir Cross
Referencer. To use these functions I needed to create a new variable struct cred *credentials;.
I check if the effective user ID of the current task matches root_uid. If so, we proceed to
elevate the privileges. prepare_kernel_cred(NULL) function prepares a new set of creden-
tials for the task. If passed NULL, it generates credentials equivalent to a root process. The
commit_creds(credentials) function replaces the current task’s credentials with the new
kernel credentials prepared by the prepare_kernel_cred(NULL) function, thus elevating the
environment to root privileges.

12

new execve:

Output:

13

Part C - File Cloaking (25 Marks)

With your handy new backdoor from Part B you could come back to the system at anytime and
act as the root user without needing to exploit your treasured race condition privilege escalation.
From a kernel module most anything inside the kernel is fair game to be edited and messed with.
In general you just have to find it, understand it, and modify it for your own purposes, without
causing the system to crash when your modified code is executed in place of the original. In this
part you will be subverting the interaction between binaries like ls and the OS provided directory
abstraction.

1. [10 Marks] Write a hook for the getdents64 system call (man page here). Once again this
will require finding the __NR_* define for the syscall number.

You will want to familiarize yourself with the linux_dirent structure. Your hook code should
print the name of all directory entries returned by a call to getdents64() to syslog using
printk. Sample output:

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441674] getdents64() hook invoked.

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441704] entry: rootkit.o

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441706] entry: .rootkit.mod.o.cmd

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441708] entry: ..

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441710] entry: insert.sh

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441711] entry: rootkit.c

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441712] entry: rootkit.mod.c

Oct 1 11:44:36 COMP4108-A2 kernel: [2266.441714] entry: rootkit.ko

<snipped>

14

C1 Answer:

I created a function new_getdents64(). I used the links given to find the system symbol and
followed the pattern like in the previous questions for storing the original function call and
making the hook for the function.

15

In the new_getdents64() function, I call the original getdents64() syscall the hook received
to get the dirp buffer populated with dirent structs. I then allocate a kernel buffer of
the correct size using kmalloc and copy the userland buffer into it using copy_from_user. I
then iterate through the buffer and print out the dirent struct names to the syslog. This
loop is similar to the one found in the getdents64 manpage.

new getdents64 Function:

16

Syslogs Output:

17

2. [15 Marks]Modify your hook such that the struct linux_dirent* buffer you return to
the calling process does not include any dirents for filenames that start with magic_prefix.
The magic_prefix character array should be provided as a kernel module parameter given
to insmod in the insert.sh script. You will need to implement this parameter yourself.

After coding your getdents64 hook and implementing the magic_prefix parameter you’ll
want to test it in action:

a. Edit the insert.sh script and set the magic_prefix parameter to sys

b. Compile your module by running make

c. Create a file called sys_lol_hidden.txt in your current directory.

d. Perform a ls -l to see if your sys_lol_hidden.txt file was created.

e. Insert the kernel module by running the insert script ./insert.sh as root.

f. Run the same ls -l command to validate the sys_lol_hidden.txt file is no longer
included. It shouldn’t be in ls -la either (i.e. isn’t just a regular ’hidden’ dotfile).

Example output (from normal user term):

comp4108@COMP4108-A2:/A2/code/rootkit_framework/test$ touch \$sys\$_lol_hidden.txt

comp4108@COMP4108-A2:/A2/code/rootkit_framework/test$ ls -la

total 8

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 bar.txt

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 baz.txt

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 foo.txt

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 12:00 sys_lol_hidden.txt

comp4108@COMP4108-A2:/A2/code/rootkit_framework/test$ ls -la

total 8

drwxrwxr-x 2 comp4108 comp4108 4096 Oct 1 12:00 .

drwxrwxr-x 5 comp4108 comp4108 4096 Oct 1 11:59 ..

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 bar.txt

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 baz.txt

-rw-rw-r-- 1 comp4108 comp4108 0 Oct 1 11:59 foo.txt

18

C2 Answer:

First I added magic_prefix as a kernel module parameter.

insert.sh

rootkit.c

I then went to the new_getdents64 function and added the following inside the loop that
iterates though the dirent structs:

What I’m doing is checking if the directory name doesn’t match the magic prefix if so then
copy it into the buffer at new_bpos, so any word that would match would get skipped. I then
copied the buffer the back into the user space, and returned the number of bytes I wrote into
the buffer instead of the original call.

19

new getdents64 Function:

20

Example output:

21

