
 COMP 4108A
Assignment 2
Due October 8th 2024

Melissa Rand

101223291

1.
wget --user comp4108 --password
z48QVUanF2wYV49A https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz

2.
sudo bash

3.

4.

that didn’t work so I used this instead as the TA instructed

5.

6.

https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz

7.

8.

9.
Least privilege, and Evidence production both help in mitigating rootkits.
Least privilege helps since it means that anyone who doesn’t need access to root privileges
doesn’t have it. If any user could edit the kernel without worrying about getting proper
permissions rootkits would be incredibly easy to install as they wouldn’t require a previous
exploit in order to gain root privilege.

Evidence production applies to mitigating the risk of rootkits since inserting and removing
kernel modules creates logs which an administrator could see and realize something is
wrong, additionally all loaded kernel modules appear when an admin runs a command like
lsmod so the evidence production of the system means its hard for the rootkit to hide as it is
very visible to an admin. However this doesn’t prevent hide in plain sight issues.

Part B

1. As you can see below and in the file I saved the original function of execve to
original_execve then replaced it with the function new_execve which essentially just gets the
euid, and filename then prints them to the kernel log and exits. I need to do the kmalloc and
strncpy stuff since I am pulling the file name (string) from user space into kernel space so I
needed to allocate memory in kernel space and copy the string into kernel memory so my
function could access it. That code is mostly copied and edited from the new_openat()
function.

2. This required only a minor change to the new_execve() function and the insert.sh script. In
the script I just added a new root_uid variable and passed it in just as the suffix variable was,
except this time I passed in uid 1001 which is the uid of the student user. Then in the
new_execve() function I added an if statement after the strncpy if statement to check if the
euid of the user was equal to root_id and if it was use the functions recommended in the hint
on the assignment, commit_creds() to give the user the passed in credentials and
prepare_kernel_cred() passing in NULL to stage the permissions we want to give the student
user, we pass in NULL since that is the euid of the root user (0).

Part C
1. used this as a reference https://xcellerator.github.io/posts/linux_rootkits_06/

https://xcellerator.github.io/posts/linux_rootkits_06/

In this function I am using the variable curr as the current directory entry we are working on.
UsrDirent contains the source buffer getdent64 would use to determine its output, then we
malloc kernel space memory for kernDirent and copy over that buffer info into kernel space
memory so we can operate on it. After that we loop over every dirent using modified code
from the getdirent64 man page adding a printk to the loop so we see the output we want. And
finally we free the kernDirent memory and return ret.

2.
To implement this feature I added an if statement checking if the beginning of d_name
matches the magic_prefix which is set in the insert.sh file. To avoid a buffer overflow error I
am only comparing the min of the length of the magic prefix or the length of the d_name this
is so we don’t compare sys to say . Which could cause an error. Then if we enter the if
statement I added a few variables to help explain what is happening within the if I made a
variable called nextRecord to save the pointer to the next dirent which we want to put on top
of the hidden dirent, and reclen to save the record length. After that we need to preform the
memmove to move the rest of the future dirent records forward on top of curr. And finally we
subtract reclen from ret to keep the length correct and use continue to avoid having the
system iterate over the next entry prematurely.

