
 

 

 

 

COMP 4108 Assignment 2 

 

 

 

 

 

Liam Collins 

101220637 

Carleton University 

COMP 4108 

David Barrera 

October 10th, 2024 

 

 



Part A 
 Files included in this project:  

liamcollins_A2_Report.pdf, liamcollins-assignment2-console-codes.txt, rootkit.c, insert.sh, 
eject.sh, Makefile 

3. In order to find the symbol for sys_call_table, I ran the code: 
cat /proc/kallsyms | grep sys_call_table 

This first cats thee /proc/kallyms folder, then uses grep to check for the address within the 
resulting list. As a result, the symbol was revealed to be: sys_call_table 

 

4. The kallsyms_lookup_name() argument was updated to include the newly discovered 
address: 

 
  

5. I used make in the directory containing the downloaded files to compile the code: 

  
6. Upon running ./insert as the root user, followed by running lsmod, the resulting list of 

modules revealed that the rootkit was successfully inserted: 

  
Additionally, checking the syslog by running the command “tail -f /var/log/syslog” revealed 
the rootkit installed successfully: 

 
7. Upon running ./eject as the root user, followed by running lsmod, the resulting list of 

modules revealed that rootkit was successfully removed: 



  
Additionally, checking the syslog by running the command “tail -f /var/log/syslog” revealed 
the rootkit uninstalled successfully: 

   
 

8. After performing the changes to the rootkit.c code, I created a textfile “TEXTFILE.txt” and 
used “strace cat TEXTFILE.c” to ensure the file was calling the open command properly: 

 
Upon confirming openat was being called, I checked the syslog with  “tail -f /var/log/syslog” 
to see if the hook was successfully printing the target file to the systemlog: 

 
The resulting systemlog proved that the hook was successful, and had then hijacked the 
system call to print the target file of openat() to the systemlog. 
 

9.   
Out of the possible principles from Chapter 1.7, I feel the two that could best help mitigate 
rootkits would be P5- Isolated-Compartments, and P6- Least-Privilege: 
 
For P5, compartmentalization of system components is a major benefit in the prevention of 
rootkit initialization. Since a major goal of rootkits is to inevitably find a way to permeate, 
and manipulate the root, keeping components separated, and individually protected when 
appropriate is a boon. When properly compartmentalized, a component is much harder to 
maliciously use, as it is harder for users to use programs/processes that are outside of the 
root or root-adjacent compartments in the initialization of rootkits. Even in the event a 
compartment is breached, the isolation prevents escalation of privileges and makes 
abusing the breach less valuable in reaching the root to establish a rootkit. 
 
For P6, minimizing the privileges used for programs granted to each process minimizes the 
windows of opportunity for potential attacks to set up a rootkit, or attempt to harvest 
information to be used for a rootkit. Assuming that attacker wouldn’t necessarily have root 
access like we did in this practice (since at that point they wouldn’t necessarily need to use 
a rootkit at that point), avoiding the use of enhanced privileges can help prevent attackers 
from manipulating the privileges in unintended ways to reach protected information (such 
as the address of the sys_call_table) that could be used for the initiation of rootkits. In the 
case that a process MUST use privileges, it is best to limit them as much as possible, and 
keep them out of scopes that could reveal vulnerabilities for rootkits. Even if attackers are 
able to use the privileges maliciously, minimized privileges can at the very least slow down 
their attempts, and cost them more resources. 



Part B 
1.  In order to create a hook for execve, I edited the code of rootkit.c to include new 

functions and variables: 
 
First was the creation of static t_syscall original_execve, which holds the original excve 
function. 
 

 
 
Next was the function “new_exceve”, an altered version of “new_openat” which targets 
execve instead. The major difference for this version of the function is a change to the 
targeted argument, as unlike in openat, the path variable for execve is not stored at the 
si region of the args, and instead the di region, which is later used to print the value. 
Finally, for printing, the effective userid, the function “current_euid()” is called, and then 
printed. 
 

 
 
 
Next, during module initialization, the “new_execve” function is called after the original 
function is backed up, and the protections are lifted from memory: 



 
 
After running “strace cat TEXTFILE.c” and “ls”, I used “tail -/var/log/syslog” to check the 
systemlog, which displayed that the hook was working: 
 

 
 
When ejecting the module, the “new_execve” function is replaced with the original 
function after protection is lifted protections are lifted from memory: 

 
 



2.  In order to complete the backdoor hook, I first had to add a new “root_uid” parameter to 
the code in order to take an id as an input from insert.sh. This was done by using the 
existing “suffix” parameter as a guideline: 

 
 
Next I altered input.sh to apply this new parameter, feeding the root_uid as the student 
user’s value 1001: 

  
Once this was completed, I altered the newexecve function to include a new line 
checking if the current effective uid is equal to the root_uid value, then using a 
combination of commit_creds() and prepare_kernal_cred(0) to overwrite the current 
euid’s credentials to be that of root whenever they execve is called under their euid: 

 
With the new exploit set up, I first ran “whoami” under a non-root user to ensure they 
had no privileges before insertion: 

 
Returning to the root terminal, I used “make” to build the new rootkit.c, and ran ./insert 
to install the program to kernal: 

 
I double checked with tail -f /var/log/syslog to ensure the rootkit was working properly: 

 
Now that everything was in place, I ran whoami again on the non-root user to find that 
they now were identified as root: 

 

 



Part C 
 

1. In order to hook the getdents64() syscall, I followed a process similar to what was done with 
execve and openat. I first started by defining an “original_execve64” to ensure that I kept the 
original version of the function intact: 

 
 
Next I created a “new_getdents64” function to run my hooked code. I ran the command 
“strace ls -a” to get a better sense of what a getdents64 call looks like, which revealed some 
crucial information: 

 
- The buffer size is 32768, which will be useful for later allocation. 
- The command does not simply use strings like the other syscalls, but instead 

contains a pointer to a buffer of dirent structures (struct linux_dirent64*), which will 
require additional work. 

With this information in hand, I looked into the dirent structure to discover each dirent has a 
d_name parameter that could be used to extract a filename. I started by first implementing 
ret to hold the original function, and a linux_dirent64 variable to extract the dirp value from 
the regs input (si represents the second input parameter): 

 

This is followed by creating a dirent poinetr buffer cur, which will be used to hold and read 
the dirent entries to kernalspace. Since some calls may be empty, I add a (ret > 0) arg to 
ensure we ignore empty calls to getdents. Additionally, since the value of dirp will be a 
buffer of dirents, I also include an offset variable for later iteration usage: 

 

This is followed by an offset loop, that constantly checks the contents of dirents until the 
size exceeds the size of ret (ie, when the end of the dirent is detected): 



 
 

- I first start by allocating space for the cur buffer. The size allocated is based on the 
size of getdents calls I discovered from “strace -a ls”. 

- Once the buffer is complete, I copy the current value of dirp to the buffer using the 
“copy_from_user” command. 

- I print the d_name of the current dirent to the kernal. 
- I adjust the offset using the d_reclen value from the current dirent. d_reclen 

represents the length of the current dirent entry, so by adding it to the offset, the 
next reading will move past this entry. 

- I apply the offset to the dirent to move to the next entry on the subsequent loop. 
- The loop continues until the offset exceeds ret, or if copy_from_user detects an 

empty entry. 

Once complete, I run the original getdents64 by returning ret. 

 

2. In order to add cloaking capabilities to the rootkit, I first had to define the “magic_prefix” 
parameter. I created the definition for the magic_prefix in a similar way to the existing suffix 
parameter: 

 
I followed this by adding, and defining the magic prefix in insert.sh: 

 
Next, in order to cloak files containing the magic prefix, we would have to edit the 
intercepted buffer in kernalspace, detect and remove any files with the magic prefix, then 
return the edited buffer back to userspace. This was done through the following: 
 



First a “bytesWritten” variable was added. This variable is intended to act as an alternate 
offset that keeps track of what the final size of dirp will be after we perform our edits: 

 
 
Next, following the command that prints the filenames to the kernal, a series of 3 code 
segments were added: 

 
 

- The first segment detects items with the hidden prefix in their titles, and prevents 
them from being copied to the userspace buffer by the next code segment. In doing 
this, when the next non-magic_prefixed dirent appears, the entry will be overwritten, 
effectively destroying the file’s existence in the eyes of the system. 
 

- The second segment writes our kernal dirents back into userspace. This uses 
bytesWritten instead of offset to ensure the that while the offset value increases, 
the perceived length of the buffer does not, resulting in the current target file being 
“removed” from the buffer. 

 
- The final segment updates similarly to offset. Since this does not run in the 

magic_prefix detection segment, It holds the system’s perceived length of dirp. 
 

Once this is complete, byteswritten is applied to ret, to replace the size with our edited 
input size: 

 

Now to test the program: 

a. The insert.sh is edited to include, and assign the magic_prefix $sys$: 

  
b. “make” is run to compile the code: 



 
 

c. The file $sys$_lol_hidden.txt is generated using “touch \$sys\$_lol_hidden.txt”: 

 
  
 

d. With the rootkit inactive, running ls -la reveals the file is still visible by the system: 

  
e. Running “insert.sh” installs the rootkit. Running lsmod confirms it installed correctly: 

  
 

f. Running ls -la again reveals that the file is now no longer detected, even though hidden 
files such as “.”, “..”, and “.hidden.txt” appear: 

 
Meanwhile, running “tail /var/log/syslog” reveals the file is being intercepted at the 
kernal level: 

 
 


