
ALEXIS UDEDCHUKWU
101225811

COMP 4108 - ASSIGNMENT 2

Files Referenced:

rootkit.c

rootkit.ko

insert.sh

eject.sh

Makefile

PART A
1. I used this command: wget --user=comp4108

--password=z48QVUanF2wYV49A
https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz

2.

3. The address for sys_call_table symbol is ffffffffa54013c0. I used grep to
filter it out of the output from /proc/kallsyms

4. I edited the rootkit.c code to provide the right symbol as an argument as seen
below

5. Confirmed

6. Confirmed.

Check the syslog
7. Confirmed

Check the syslog

8. I uncommented the lines to hook and unhook openat for this question.

9.
Principal 6: Least-Privilege:
How it can help to mitigate rootkits: Since rootkits typically embed themselves in
a system to gain special privileges, the least-privilege principle—allocating the
fewest privileges needed for a task for as little time as possible—helps by limiting the
rootkit's access. If a rootkit manages to infiltrate the system, it won't have full
system-wide privileges, reducing the damage it can cause, as it wouldn't be able to
access or manipulate critical parts of the system. My assumption here is that the
rootkit attempts to gain special privileges, like root access, after entering the system
through a compromised program. The type of rootkit this could help mitigate could
be a kernel-mode rootkit.

Principle 2: Safe Defaults:
How it can help to mitigate rootkits: Using safe default settings, like
deny-by-default access controls, can help stop rootkits from getting installed or
delivered. For example, if a system blocks unauthorized software from being
installed by default or checks permissions strictly, it makes it harder for rootkits to get
in. This principle helps in the delivery phase of kernel-mode rootkits, which try to
mess with the operating system at a low level. By having safe defaults on important
system areas and requiring permission for things like installing new drivers or
changing the kernel, the system can block or catch rootkits before they can hook
into the kernel. My assumption is that the rootkit is trying to get into the system
through a kernel vulnerability and needs system privileges to be installed.

PART B:
1. I implemented a kernel module that hooks into the execve syscall to log the

names of files executed and the effective UID of the user running them. I
consulted the execve man page as well as used the provided hook for openat
to learn about the function and create my hook. Using strncpy_from_user(), I
copied the filename from user space, and I used current_euid()(which is
included in the current macro) to get the effective UID. The necessary
information was printed to the kernel log using printk(). I tested the module by

inserting the rootkit(using the provided insert.sh)and then ran several
commands. I verified the output using dmesg | tail, which showed the
filenames of the executed files and their corresponding effective UIDs in the
system logs. This confirmed that the execve syscall hook was working as
intended.

Modify your hook code so that when the effective UID of the user executing
an executable is equal to the value of the root_uid parameter, they are given
uid/euid 0 (i.e. root privs). The root_uid parameter must be provided via the
insmod command in insert.sh. Note that the root_uid parameter should be

set to your user's UID to get root, not root's UID. You will need to add this
behaviour.

2. For this question, I modified the execve hook to escalate the privileges for the
user with the root_uid (1001) provided in insert.sh. The involves checking if
the effective UID of the user running a command equals the specified root_uid
and if it does then, the hook calls commit_creds(prepare_kernel_cred(NULL)),
which grants the user root privileges (UID 0). I tested the implementation by
first running the command whoami in a terminal as a normal user, which
confirmed my UID as student. Next, I inserted the kernel module using the
insert.sh script, which includes the necessary parameters to set the root_uid.
After successfully inserting the module, I executed the whoami command
again, and the output indicated that I was now the root user. This confirmed
that the privilege escalation works as it should, allowing a specific user to
attain root privileges through the modified execve hook.

Part C
1. For this question, I was asked to write a hook for the getdents64 syscall,

which reads several linux_dirent structures from the directory referred to by
the open file descriptor (fd) into the buffer pointed to by dirp (pointer to where
directory entries are stored). It was used to read directory entries whose

names I printed to the Kernel log using printk. I did this by getting the syscall
number for getdents64() using the __NR_getdents64 definition which allowed
me to find its location in the syscall table. I used the linux_dirent64 structure,
which holds information about the directory entries (e.g. the file name). After
this, to confirm that it works, I complied with make, which generates rootkit.ko
which I then inserted into the kernel using the provided insert.sh script then
assessed the output using dmesg | tail which prints the last couple of entries
in the kernel log.

My expected output was a list of directory entries and file names but instead, I
got entries like .. and numbers like 812. Since this result was unexpected, I
contacted the TA, who walked me through some things to try but while the
same code was able to work as expected on this system, I still was getting the
unexpected entries above. I was thinking this might be due to differences in
our environments but I am not too sure about that.

2. For this question, the goal was to modify the hook for getdents64 to hide files
with the magic_prefix, (\$sys\$). Basically that files beginning with the
magic_prefix are excluded from the list of items in the directory given to the
user. So I passed the prefix “$\sys\$” as a parameter in the insert.sh script
which will make sure that files that start with the prefix
In the hook, I included the condition that if a directory entry’s name began
without specified magic_prefix, so if d->d_name starts with the magic prefix
using strncmp

the entry is excluded from the list result by using the memmove() function to
shift the remaining entries up in the buffer to hide the files from the user, but if
not, I just keep going through the list of entries.

To test the code, I ran make to compile the code and then created a file to be
hidden using touch \$sys\$_lol_hidden.txt. Then I verified that the file was
created by running ls -l and then inserted the rookit.ko module, and my
expected output was that after running ls -l, I shouldn't see the
\$sys\$_lol_hidden.txt file in the resulting list, which I did get as seen in my
image below. So this confirms that the hook successfully goes through the
entries, and returns the modified buffer without files starting with the magic
prefix.
To make this work, I did modify the insert.sh script to pass the magic prefix as
a parameter when inserting the module.

