
Assignment 2

Name: Yun Hye Nam
Password: 101211656

Codes included:
See rootkit.c for

● Part A, Q4, Q8
● Part B
● Part C

See insert.sh for
● Part B Q2
● Part C Q2

Part A

1. Ran command: wget --user comp4108 --password z48QVUanF2wYV49A
https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz and unzipped the
tar file using tar -xvzf a2.tar.gz

2. Ran sudo bash and provided password

3. Ran command cat /proc/kallsyms | grep sys_call_table to get
ffffffff864013c0 R sys_call_table
This reads /proc/kallsyms and searches for line containing “sys_call_table” string. The leftmost
string in the output is the memory address.
So, the address is ffffffff864013c0

4. See rootkit.c code. Passed “sys_call_table” as an argument to kallsyms_lookup_name in
get_syscall_table_bf, replacing [NEEDED FOR PART A]

5. Ran make all command as specified by Makefile and confirmed its building.

6. As root user, ran command ./insert.sh.

Executing lsmod shows rootkit (at the top). The lsmod man page says that this command
shows which kernel modules are currently loaded.

Through sudo tail -f /var/log/syslog , confirmed rootkit loading on syslog. The tail -f tails the
syslog at real time.

7. As root user, ran ./eject.sh
lsmod shows rootkit gone.

Ran sudo tail -f /var/log/syslog and checked its unloading.

8. On the rootkit.c file, in its init_rootkit and cleanup_rootkit functions, I called
protect_memory() and unprotect_memory() and uncommented the original_openat and
new_openat lines. What this does: As the rootkit module loads, we unprotect memory, allowing
the syscall table to be updated with the new hook, and once it is hooked, we protect the
memory. As the rootkit module unloads, memory is unprotected again, allowing us to update the
syscall table to original openat. After that, we protect memory at the end.
Then I ran make clean and then make all to rebuild the updated rootkit module and loaded it by
running ./insert.sh as root.
Then I created a random .txt file named sometxt.txt by running touch somettxt.txt because
new_openat() checks for .txt files and prints it out.

On syslog (tail -f /var/log/syslog) this was generated:

9.
P7 Modular-design helps mitigate rootkits. As in Part B, once an attacker gains the root UID
when executing binaries, the attacker can impersonate root user system-wide. A modular
design that segregates privileges across units in file systems can prevent the attacker from
gaining root user privilege across the whole machine or making changes anywhere, even if they
gained root user privilege to a unit in the machine or got to change that unit.

P14 Evidence-Production. A system activity monitoring tool can help detect malicious rootkit
insertion. Since rootkit can allow a malicious actor to quietly carry out an attack, detection of
rootkit becomes important. This can be done by for example, alarm on suspicious invocations of
the insmod command or verifying the safety of each loaded kernel module. This can allow the
system administrator to take action before the malicious actor uses rootkit to carry out further
attacks.

Part B

1. See rootkit.c for the code.

First, created the original_execve variable, which stores the original execve function. It is in
static t_syscall type.

Then wrote a new_execve function.
The name of the executed file is the first argument of execve, according to the man page
https://linux.die.net/man/2/execve. To find that register, ran the command uname -a to find we
have x86-64 architecture. According to the syscall man page
https://www.man7.org/linux/man-pages/man2/syscall.2.html, the first argument register for
x86-64 is rdi. So the file name is found by the syscall rdi register: regs->di
Then, strncpy_from_user() function copies that value into the char* filename variable. If there is
an error, it frees the filename variable memory and exits.
According to https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/cred.h, current_euid()
returns the effective UID information as kuid_t type. kuid_t is a struct with attribute val as uid_t
type https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L23. But uid_t is also
defined as __kernel_uid32_t
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/types.h#L32, which is unsigned
integer type
https://elixir.bootlin.com/linux/v5.4.171/source/include/uapi/asm-generic/posix_types.h#L49. So
we can pass current_euid().val as an unsigned int which is the current effective UID.
Then we print the filename and euid variable to syslog using printk().
At the end of the function, it frees the filename memory through kfree() and invokes the original
execve syscall.

As we load the rootkit module, we call init_rootkit().
In the init module, the original execve function is found by looking up __NR_execve on the
syscall table
https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h and is
passed into the original_execve variable: original_execve =
(t_syscall)__sys_call_table[__NR_execve];
Then once memory is unprotected, the new_execve function is called and updated in the syscall
table.
After it is hooked, we protect the memory.

As we unload the module, cleanup_rootkit() is called. Here, we unprotect the memory, so that
we can revert the syscall table with the original_execve, unhooking the syscall. Then we protect
memory back.

First, I ran make all and ./insert.sh on the terminal with root user. Then on a second terminal as
student user, I ran sudo tail -f /var/log/syslog. As we see /usr/bin/sudo is first executed by the

https://linux.die.net/man/2/execve
https://www.man7.org/linux/man-pages/man2/syscall.2.html
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/cred.h
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L23
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/types.h#L32
https://elixir.bootlin.com/linux/v5.4.171/source/include/uapi/asm-generic/posix_types.h#L49
https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h

user with the effective UID 1001 (student user) who, through setuid bit, acquired the root user
privilege to run /usr/bin/tail with effective UID 0 (root). When I run ls (/bin/ls), it is now back with
student user privileges (euid = 1001).
Then on the root user terminal, I ran ./eject.sh. The script is executed with eUID = 0 (root),
which executes rmmod command also with eUID = 0 (root) to unload the rootkit module.
Afterwards I read the syslog (sudo cat /var/log/syslog | less) to verify:

2. See rootkit.c and insert.sh
The current user is student (whoami command) and its UID is 1001 (id command). In insert.sh,
set the ROOT_UID shell variable as 1001 and passed that as the root_uid parameter to insmod
command.
In rootkit.c, we pass the command line argument to the module through module_param(). Its
arguments are the variable name (root_uid), its type (int) and its permissions (0) according to
https://tldp.org/LDP/lkmpg/2.6/html/x323.html.

In cred.c https://elixir.bootlin.com/linux/v5.4.171/source/kernel/cred.c, prepare_kernel_cred()
function returns a pointer to a new initialized cred struct if the argument is NULL. If the argument
is NULL, it initializes cred as init_cred and then verifies and returns this new cred with get_cred()
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/cred.h#L247. Init_cred
https://elixir.bootlin.com/linux/v5.4.171/source/kernel/cred.c#L41 has uid attribute with value
GLOBAL_ROOT_UID, which is defined as KUIDT_INIT(0)
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L55. KUIDT_INIT(0) is a
kuid_t struct with value = 0
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L30, meaning it prepares a
new cred whose uid is that of the root user.

So in the new_execve() method, we prepare a new cred with
struct cred *new_cred;
new_cred = prepare_kernel_cred(NULL);

https://tldp.org/LDP/lkmpg/2.6/html/x323.html
https://elixir.bootlin.com/linux/v5.4.171/source/kernel/cred.c
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/cred.h#L247
https://elixir.bootlin.com/linux/v5.4.171/source/kernel/cred.c#L41
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L55
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/uidgid.h#L30

Then we set this new cred to the current user. This is done by commit_creds() method in cred.c,
providing the new cred pointer as the argument: commit_creds(new_cred);

Verification:
1) On a student terminal I ran command whoami, which gave student.
2) On a second root terminal, I ran ./insert.sh to load the rootkit module.
3) On the student terminal, I ran whoami again, which now gave root.
4) On the root terminal, I ran ./eject.sh to unload the module.
5) On student terminal, I ran whoami, which is now back to student.

Part C
1. See rootkit.c

We create static t_syscall variable to store the original getdents64() syscall: original_getdents64

According to the unistd_64.h header
https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h, we can
look up the address of the original getdents64() sycall on the syscall table with index
__NR_getdents64: original_getdents64 = (t_syscall)__sys_call_table[__NR_getdents64]; This
is called in the init method.

Description of new_getdents64() function:
According to the getdents64 man page, the second argument of original getdents is the
directory entries buffer https://linux.die.net/man/2/getdents64. The rsi register gives the second
argument according to the syscall man page
https://www.man7.org/linux/man-pages/man2/syscall.2.html, so regs->si represents the directory
entries it read.

Then we call the original getdents64() method. Its return value, ret, is the number of bytes it will
read according to the getdents64 man page https://linux.die.net/man/2/getdents64. If negative,
we have an error so we exit.

We declare a struct linux_dirent * variable kdirp to point to the directory entries buffer in kernel
space. Using kdirp = kmalloc(ret, GFP_KERNEL), we allocate kernel memory for the directory
entries buffer, with the number of bytes read ret set as the buffer size.

Then we copy the dirents in user space regs->si to memory location pointed by kdirp in the
kernel space using copy_from_user(kdirp, (void*) regs->si, ret). At failure (negative return
value), free kdirp using kfree() and exit.

Using the code example from the man page https://linux.die.net/man/2/getdents64, we iterate
over the entries buffer using a for loop:

1. for (bpos = 0; bpos < ret;): Starting from int bpos = 0: if bpos is less than the size
of buffer, ret, then go into the loop block. Otherwise, break the loop:

2. A struct linux_dirent pointer d is set to point to the buffer at address kdirp + bpos:
d = (struct linux_dirent *)((void *)kdirp + bpos);
Here, kdirp is cast to void* to increment the pointer by bpos, and not by bpos
multiplied by the size of linux_dirent struct.
Since bpos = 0, d points at the start of the buffer, which contains the first
directory entry.

3. Then use printk() to print out the d->d_name, the first entry name.
4. Add the first entry length d->d_reclen to bpos: bpos += d->d_reclen;

https://elixir.bootlin.com/linux/v5.4.171/source/arch/sh/include/uapi/asm/unistd_64.h
https://linux.die.net/man/2/getdents64
https://www.man7.org/linux/man-pages/man2/syscall.2.html
https://linux.die.net/man/2/getdents64
https://linux.die.net/man/2/getdents64

5. Start the second loop. Check if the new bpos is less than the size of the buffer,
ret. Otherwise, break the loop.

6. d is set to point to the memory pointed by kdirp+bpos. Now it is the location in the
buffer after the length of the first dirent, i.e. the location of the second dirent.

7. printk() prints the second entry d->d_name.
8. Add to bpos the new offset d->d_reclen
9. Repeat loop until bpos is equal to ret.

This will print all directory entry names.

Then we kfree(kdirp) to free the buffer memory and exit by returning the original ret.

This new_getdents64() function will be used to update the syscall table as a hook in the init
function, in between memory unprotection and protection: __sys_call_table[__NR_getdents64]
= (unsigned long) new_getdents64;

In the cleanup function, we will unhook the syscall by putting back the original getdents64() on
the syscall table in between unprotecting and protecting memory:
__sys_call_table[__NR_getdents64] = (unsigned long)original_getdents64;

This is the screenshot of sudo tail -f /var/log/syslog after running command ls in the a2
directory with rootkit loaded.

2. See rootkit.c and insert.sh

In insert.sh, to pass the magic_prefix parameter sys, we declare shell variable
MAGIC_PREFIX=\$sys\$ with the slash to escape the dollar sign (to prevent the dollar sign from

taking an argument) and pass that as a parameter to the insmod command with
magic_prefix=$MAGIC_PREFIX.

In rootkit.c, we receive the parameter through module_param(magic_prefix, charp, 0);
According to https://tldp.org/LDP/lkmpg/2.6/html/x323.html, the first argument is the parameter
received (magic_prefix), the second is the type of parameter (char pointer) and third is the
permission 0.

Then create the sys_lol_hidden.txt file in the system with touch \$sys\$_lol_hidden.txt
command. The slash escapes the dollar sign. ls -l shows it was created

Back at rootkit.c, modify the new_getdents64() function.
We allocate some kernel memory of ret size for new_kdirp of type struct linux_dirent*. This will
be a pointer to the modified dirents buffer. The modified dirents buffer will hold all dirents without
the magic prefix. The length of these dirents is represented by variable
length_minus_magic_prefix, which starts at 0.

While looping through the directory entries in the buffer, check if the entry name does not start
with the magic prefix: strncmp(d->d_name+1, magic_prefix, strlen(magic_prefix))!=0.
Here strncmp() compares the entry name string and magic_prefix string up to the length of
magic_prefix. If it does not return 0, we have found an entry without the magic prefix.

If it does not start with the magic prefix, we copy its dirent structure to the modified dirents
buffer, using memcpy((void *)new_kdirp+length_minus_magic_prefix, (void *)d, d->d_reclen);
This copies the source data pointed by d, which is the each dirent without the magic prefix, to
the destination address pointed by new_kdirp + length_minus_magic_prefix, the new_kdirp
buffer at index length_minus_magic_prefix, up to the number of bytes d->d_reclen, the length of
that magic-prefix-less dirent. Afterwards, we increment length_minus_magic_prefix by the length
of the dirent d->d_reclen, so that the next dirent without magic-prefix will be copied to the
memory location right after the current one.
When the loop finishes the new_kdirp buffer will hold all magic-prefix-less dirents at
length_minus_magic_prefix bytes.

https://tldp.org/LDP/lkmpg/2.6/html/x323.html

Then we replace the original dirent buffer in userspace pointed by regs->si, with the new_kdirp
buffer. Since the new_kdirp buffer is in kernel space, we copy it to userspace:
copy_to_user((void *)regs->si, (void *) new_kdirp, length_minus_magic_prefix). This copies the
length_minus_magic_prefix bytes of data at source kernelspace address new_kdirp to the
destination userspace address regs->si. This changes the second argument register of the
getdents64 syscall so that getdents64 will read only the directory entries without the magic
prefix.

If this results in an error, free new_kdirp and kdirp using kfree() and exit. If successful, we
change ret, the original number of bytes to be returned, to length_minus_magic_prefix, the
number of bytes containing actual data after removing directory entries with magic prefix. This
will prevent the new getdents syscall from returning more bytes than the modified dirents.

Free kernel addresses kdirp and new_kdirp using kfree() before returning ret.

On a root user terminal, running command ls -l shows sys_lol_hidden.txt. However, when we
insert the rootkit module using ./insert.sh and run ls -l again or ls -la (for hidden files), it is
gone. See screenshot on the next page.

