

COMP4108-A
Assignment 2

Abdul Sayyad

101212115

Part A – Setup

1. Rootkit has been downloaded

2. A new bash shell with root privileges is run in a separate window

3. Upon inspecting the file “/proc/kallsyms” with the piped command “grep

sys_call_table”, I was able to locate the following lines in the file:

Seeing the three entries above, I noted down the address.

4. The rootkit.c file has been altered to include the address name in the

appropriate parameter as shown below:

Initially, I placed the address itself, but after some trial and error found out

that it requires the address name and not memory entry. I also went

through the TODOs for part A and added the unprotect and protect calls

during init and cleanup, where necessary, in order to be able to write to

that memory location:

For init:

For cleanup:

5. The command “make” was run in the a2 directory to confirm that the code

compiles:

The “.ko” file is now ready to be inserted using the “insert.sh” and ejected

using the “eject.sh” scripts given to us that make use of insmod and other

kernel loading commands.

6. Running “./insert.sh” goes through without any issues. Upon running

“lsmod” I could see the rootkit at the top of the list of installed kernel

modules:

The last few lines of syslog also confirm that it has been loaded successfully:

7. Running “./eject.sh” goes through without any issues. Upon running

“lsmod” I could see that rootkit is no longer in the list.

The last lines of syslog also confirm that it has been ejected successfully:

8. For Part A, the code for openat() was given to us already. I altered the init()

function to unprotect the memory, hook our function to the syscall table,

and then protect the memory. For the cleanup() function, I altered it to

restore the original function instead. Now to test our hook, I opened a test

file I created using vim, and then checked “/var/log/syslog” using tail (note

that I am writing the assignment after completing all the code, so I restarted

the syslog service and will uncomment my hooks as I go in order to have a

“clean” syslog output for demonstration purposes):

We can see that after inserting the rootkit module it prints in the syslog that

it has been initialized and loaded. Using vim ends up invoking openat() for

an rgb.txt file it uses, and my foo.txt, for which the screenshot above shows

entries for.

9. The most apparent principle that can be applied here is P6 – Least privilege,

as rootkits need special permissions to actually get installed into the

system. By disallowing unauthorized access to root commands, we can

prevent uwanted LKMs from getting installed. Secondly P4 – Complete

Mediation, is also necessary, since rootkits are able to make direct calls to

the sys_call_table and make changes to it. Complete mediation could

ensure that each call made must be authorized, therefore mitigating the

effectiveness of rootkits to some degree.

Part B – Backdoor

1. Firstly, I looked at the way our openat() function was created and used

the same function signature for the execve() hook, newexecve():

The function, just like new_openat() eventually calls the original

openat() and returns it. To continue the setup for the hook, I followed

the openat() hooks in init() and cleanup() that change the __NR_X,

where x here is execve, in the syscall table effectively directing the

system call to our function instead:

The above was done in init(), whereas in cleanup() the syscall table entry

will point back to the original execve.

Once again, following the logic of openat(), I used strncpy_from_user()

to take the command being invoked, which is the first argument

therefore requires a call to regs->di instead of regs->si which is the

second argument in the registry. I copied the command then printed the

command in the kernel syslog using printk(). Next, I called the current

macro function current_euid() to get the euid of the current process and

printed that using printk() again. The command that was copied needed

to be kmalloc’d and kfreed the same way as filename in new_openat().

The resulting logic is in the snippet below:

To test that this works, I rebuilt the LKM, and inserted it back into the

kernel. Next, I ran one shell as student and one as root, and made an ls

call from student. The output of tail /var/log/syslog is as follows:

We can see that it shows which executables are being executed, and the

effective uid of the user executing the file (which is root for tailing the

syslogs previously, and then ls being called by the student user).

2. For this part, I added the root_uid variable to insert.sh, where I declared

it then added it to the insmod command. The root_uid is actually the uid

of student, whom we want to give root privileges to:

And now in rootkit.c, I get the parameter root_uid and add it as a

variable to start working with it:

Back to new_execve(), I added a conditional block that checks if the

effective uid of the calling user is the same as the root_uid variable we

stored, then we know it’s the student and we give the user root

credentials. This is done using prepare_kernel_cred() and

commit_creds(). Using prepare_kernel_cred() and passing the current

task to it, I get the cred of the current task caller and set the values of 0

for uid and euid, then I passed that to commit_creds as follows:

To test that this functionality works, I rebuilt rootkit.c. Before inserting it,

I made a whoami command as the student user. I inserted the LKM and

then tried the same command again, and this was the output:

The logic here is that execve syscall is invoked whenever a command is

passed to the shell, and when the current task is being called by student,

getting the euid of the caller gives us the uid of the student, which

passes the condition. Then using prepare_kernel_cred we are able to get

the credentials of the current task’s calling user. I overwrote the uid and

euid to be 0 which is root, then I commited those creds using

commit_creds(), effectively changing the uid and euid of student and

giving them root privileges triggered by them making a command.

Part C – File Cloaking

1. Firstly, I familiarized myself with getdents64() and the linux_dirent

struct. The function getdents64() returns the number of bytes read,

which is actually the size of the dirents that are currently in the

userland buffer. In order to actually get the dirents, we have to copy

them from userland into a buffer we kmalloc in the kernel memory. It

is accessed by looking at the userland register’s second argument (i.e.

regs->si). Since we know that getdents64() returns the size, we can

use that for the size of the buffer, and we get the following:

There is an example in the man page for getdents64() which I used to

learn how to iterate through dirents which I now have copied into my

buffer. It makes use of the dirent struct property d_reclen, which is

the length of the dirent, and the property d_name which is self

described. Starting from the beginning of the buffer, i.e. 0, I initialize

dirent pointer as initially just the memory pointer to the buffer itself

(buffer memory address + 0 is still buffer memory address), and then

I update the position based on d_reclen to traverse the buffer dirent

by dirent to printk the entries. The code snipped below shows my

implementation:

Following that, I free the kmalloc’d buffer and return the ret variable

i.e. the size of the dirents in userland buffer. Following the testing

pattern of the previous parts, I get the following:

The getdents64() is being called frequently given that commands like

ls use it, and even more while having VSCode ssh’d into the VM. That

makes the syslog file get heavily populated very quickly.

2. First, I added the magic prefix into insert.sh the same way the other

variables were inserted:

I used the backslash to escape the reserved $ symbol. Next, I loaded

the magic_prefix variable into the module as done previously with

the other variables in rootkit.c:

Then I started working on the new_getdents() to modify it and add

my logic to hide files starting with the magic prefix. Since I already

had much of the skeleton code I needed from the previous question

(copying the buffer from userland, iterating through dirents), I just

added another buffer that will store the altered dirents. Knowing that

the original getdents64 returns the byte size of the current dirents

userland buffer in the registry, which I have previously used to

kmalloc the original buffer for Q1, I used it again to kmalloc the new

buffer in kernel memory. The new buffer will either be the same size

as the old buffer, with no hidden files being “cleansed”, or it will be of

smaller size, hence using the ret of getdents. Using the same logic

from openat to compare the strings, I used strncmp to compare the

magic prefix and the dirent name (using d->d_name) and I took the

strlength of the prefix to make sure it compares the right number of

characters in the two strings. If the prefix and the prefix-sized first

chunk of d_name don’t match, then it gets added to the new buffer

that I called fakebuf. I need to keep track of the byte position in the

fake buffer just like I did with bpos (credit goes to the getdents64

man page code, it saved my life). And just like buf + bpos was used to

indicate the byte position when traversing the original buf, I used

fakebuf + fpos (fake buf position) to indicate the same for fakebuf.

The handy memcpy() function takes the memory position you give it,

the data to be copied over, as well as the size of said data. Therefore,

I only needed to use d->d_reclen for the current d’s size when adding

it to the fakebuf and then I update the position of the byte to current

position + d_reclen number of bytes:

Now that I have the new buffer, with its size being the value of fpos

after traversing and populating (mirroring ret for the original buf), I

copy it back to the userland register:

An issue that I faced while implementing this is not being able to

detect the magic_prefix, then I realized that the system stores the

filenames with escaped characters wrapped in quotation marks.

Therefore, I add an offset of when looking at d_name to bypass the

first quotation mark. Lastly, as the original getdents returns the size

of the userland buffer of dirents, I return the size of the fake buffer

using fpos. To test the hook, I created the following files before re-

inserting the LKM:

Then called ls -la in the directory before and after inserting the LKM.

Here is the output for the before and after:

As seen above, any files beginning with the magic prefix are now

being hidden from the user. The submission includes rootkit.c, the

bash script files insert and eject, and the Makefile.

