
COMP 4108 Assignment 2

Due 11:59PM on Oct 8th
Name: Michael Macdougall

Student #: 101197828

Section A:

1. No marks
2. No marks
3.

Command:
cat kallsyms|grep sys_call_table
Address: ffffffff92a013c0

4.

5.
Command:
make

6.
Commands:
sudo ./inject.sh

lsmod

7.

Commands:
sudo ./eject.sh
lsmod

8.
See rootkit.c for this part
Commands:
touch cloth.txt
cat cloth.txt
sudo tail /var/log/syslog

9.
P5 Isolated Compartments - If we compartmentalize both the user space and the kernel space this
can prevent the access to syscalls that allow rootkits to hide files.

P6 least privilege - Rootkits use escalation of privilege in order to gain access to root level
permissions and by providing least privilege it can make it much harder for rootkits to be
effective.

Section B:
1.

See rootkit.c for this part specifically the new_execve() hook

2.
See rootkit.c and insert.sh for this part

Explanation: The way that this method of backdooring works is by first saving the original
execve() syscall so we can call it later. Unprotect the memory in order to be able to write to the
sys_call_table, Then by intercepting the execve() syscall point it to a custom execve() hook. This
hook checks if the current effective uid is equal to the root_uid param passed in using insmod in
the insert.sh script. If that is true it prepares new credentials using the prepare_kernel_cred()
function and commits them to the user using commit_creds(). Finally we return the original
execve() allowing the program to run with elevated permissions and call protect_memory() to
prevent future and unintended edits.

Section C:
1.

See rootkit.c for this part specifically the new_getdents64() hook

2.
See rootkit.c and insert.sh for this part

Explanation: The way that this method of hiding files works is by first saving the original getdents64()
syscall so we can call it later. Unprotect the memory in order to be able to write to the sys_call_table.
Then by making a copy of the dirents to a kernel buffer we are able to manipulate the dirents. Loop
through all the entries and print them out while also checking if the current entry has the magic_prefix in
this case ‘sys’. If the first entry has the magic prefix, subtract the size of the current entry from the total
and shift each entry forward by one to cover the first entry. Otherwise, change the size of the previous
entry to be the size of the sum of the previous and current entry, essentially skipping over the current
entry and hiding it. Finally copy the kernel buffer back to the userspace and then return the original
getdents64 syscall.

