
COMP4108- Assignment 2
Isaiah Gratwohl, 101152162
w

Part A

3. Address: ffffffffbc8013c0. I used cat /proc/kallsyms | grep sys_call_table

5/6/7: dmesg

8. With the rootkit loaded, any program that makes use of openat() should use our function instead. To
test if it works, I made a blank file called “test.txt”, then after loading the module, ran cat ./test.txt.
dmesg then gives as output:

and we can see that our function is called, where cat would normally use openat() to read the file.

9. Since kernel modules run as root, there is little we could do to protect the system once a rootkit is
installed. So we should focus on prevention, and detection.

Principle of least privilege (P6) would help with prevention in the first place, as granting only the
minimum permissions necessary to various programs would decrease the chance that they are exploited
for privilege escalation.

Evidence production (P14) would aid detection if a rootkit were to be installed. Detection tools could
monitor sensitive data, such as the control register, and sound an alert if a modification is made.
Rootkits that are unaware of this protection would then be revealed.

Part B
execve() function signature:

int execve(const char *pathname, char *const _Nullable argv[], char *const _Nullable envp[]);

In our hook, we need to know the pathname of the file being executed so we can print it. The first
argument of is passed through the rdi register. So we obtain its value with: regs→di.

Then we must compare our eUID to the root_uid provided by insert script. We do this with:

 if ((int)current_euid().val == root_uid) {...

if so, we use commit_creds with the new uid/euid of 0.

1. output:

[8838.928999] Executing /usr/bin/tail
[8838.929003] Current UID: 0
[8838.929026] Executing /bin/dmesg
[8838.929029] Current UID: 0

2. output:
root@COMP4108-a2:~/a2# su student
student@COMP4108-a2:~/a2$ whoami
student
student@COMP4108-a2:~/a2$./insert.sh
insmod: ERROR: could not insert module rootkit.ko: Operation not
permitted
student@COMP4108-a2:~/a2$ sudo ./insert.sh
student@COMP4108-a2:~/a2$ whoami
root

Note:the above output doesn’t really prove anything since I found it
impossible to insert the module without automatically promoting
myself to root.

Part C
Getdents64 function signature:

int getdents(unsigned int fd, struct linux_dirent *dirp,unsigned int count);

My code contains comments which detail the following:

We retrieve dirp from ret→si. We call the original getdents64 which copies all the
directory entries into buffer pointed to by dirp. But even with the pointer, we
can’t access those directories since they are in user space. So we must first copy
them into kernel memory with copy_from_user. Then, we can just use pointer
arithmetic to read each dentry and check if it starts with the magic prefix. If a
dentry does not start with the prefix, we copy it into another buffer. Then, we
copy this new buffer back into user space with copy_to_user, who will not see the
hidden dentries.

1. output:

[9657.656932] getdents64() hook invoked
[9657.656998] entry: rootkit.o
[9657.657001] entry: .rootkit.mod.o.cmd
[9657.657004] entry: ..
[9657.657007] entry: insert.sh
[9657.657009] entry: rootkit.c
[9657.657012] entry: rootkit.mod.c
[9657.657015] entry: rootkit.ko
[9657.657019] entry: isaiahgratwohl-assignment2.pdf
[9657.657022] entry: .rootkit.ko.cmd
[9657.657024] entry: test.txt
[9657.657027] entry: Makefile

[9657.657030] entry: modules.order
[9657.657033] entry: rootkit.mod.o
[9657.657036] entry: .rootkit.o.cmd
[9657.657039] entry: eject.sh
[9657.657041] entry: .
[9657.657044] entry: .rootkit.mod.cmd
[9657.657047] entry: sys_lol_hidden.txt
[9657.657050] entry: Module.symvers
[9657.657053] entry: rootkit.mod
[9657.657056] entry: .txt

2. output:

student@COMP4108-a2:~/a2$ ll
ls: cannot access '': No such file or directory
total 196
c????????? ? ? ? ? ? ''
drwxrwxr-x 2 student student 4096 Oct 18 23:21 ./
drwxr-xr-x 9 student student 4096 Oct 18 23:00 ../
-rwxrwxr-x 1 student student 107 Feb 1 2024 eject.sh*
-rwxrwxr-x 1 student student 219 Oct 18 22:30 insert.sh*
-rw-rw-r-- 1 root student 20480 Oct 18 23:00 isaiahgratwohl-assignment2.pdf
-rw-rw-r-- 1 student student 174 Feb 1 2024 Makefile
-rw-r--r-- 1 root root 28 Oct 18 23:21 modules.order
-rw-r--r-- 1 root root 0 Oct 14 12:56 Module.symvers
-rw-rw-r-- 1 student student 9455 Oct 18 23:21 rootkit.c
-rw-r--r-- 1 root root 13648 Oct 18 23:21 rootkit.ko
-rw-r--r-- 1 root root 238 Oct 18 23:21 .rootkit.ko.cmd
-rw-r--r-- 1 root root 28 Oct 18 23:21 rootkit.mod
-rw-r--r-- 1 root root 1492 Oct 18 23:21 rootkit.mod.c
-rw-r--r-- 1 root root 112 Oct 18 23:21 .rootkit.mod.cmd
-rw-r--r-- 1 root root 4536 Oct 18 23:21 rootkit.mod.o
-rw-r--r-- 1 root root 30946 Oct 18 23:21 .rootkit.mod.o.cmd
-rw-r--r-- 1 root root 10480 Oct 18 23:21 rootkit.o
-rw-r--r-- 1 root root 49769 Oct 18 23:21 .rootkit.o.cmd
-rw-r--r-- 1 root root 20 Oct 14 19:20 test.txt
-rw-r--r-- 1 root root 0 Oct 17 16:15 .txt

	Part A
	Part B
	Part C

