
Fraser Rankin
101192297

COMP 4108 Assignment 2
Due 11:59PM on Oct 8

Assignment out of 47 marks total

Files in Submission:
1. fraserrankin-assignment2.pdf
2. fraserrankin-assignment2.zip

a. rootkit.c
b. Makefile
c. eject.sh
d. insert.sh
e. insert B.txt (a text file containing the code I used for part B)
f. new_getdents64().txt (text file containing the code I used for C1)

Part A - Setup (7 marks)
1. wget --user comp4108 --password z48QVUanF2wYV49A

https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz
tar -xvzf a2.tar.gz

2. Command: sudo bash
and then enter the password

3.

4.

5.

https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/a2.tar.gz

6. I had added the protect_memory() and unprotect_memory(), where it was
commented in the comments of the rootkit.c file

7.

I uncommented the lines of code where they were labeled in the comments of the
rookit.c file

8.

9.

Rootkits are designed to take advantage of the systems and gain the entity that
deployed the rootkit, accees to the system that the rootkit was deployed on.
However, there are several security principles that can be implemented to help
prevent the use of rootkits on our systems. The first principle that can be
implemented is P4 Complete Mediation. The principle focuses on the verification of
entities before anything is run on the system, as well as verifying the integrity of files.
This would help us with the rootkit as it would force the verification of both the user
that implemented the rootkit but also verify the contents of files that are being
changed by the rootkit. Another principle that would help block the rootkits is P5
Isolated-Compartments. This principle follows the logic of isolating different
functions and preventing cross-system changes by a singular program. This would
stop the rootkit from making changes to any important files.

Part B - Backdoor (15 Marks)
1. To make a new hook for the execve syscall, I followed a path like how the openat

syscall was made in the rootkit. I declared the filename and the return value; I then
allocated the filename in kernel memory and copied the filename into the kernel
variable. I then declared the effective user id as current_euid() to get the euid of the
current process. I then printed the info to the system logs with printk and then freed
the filename from kernel memory, set the return value as original_execve(regs) and
returned the returned value.

2.

From B1 to B2 we made some changes to our rootkit.c code, specifically to the the
new new_execve() function that we hade created previously to print the name of the
files being executed and the EUID of the user running the file. The function works by
replacing the systems execve system calls (we intercept and get the file name and
EUID of the process executing the command). We first check if the EUID of the
process is root ID, we then escalate the privileges of the processes’ privileges to

root. Next, the prepare_kernel_cred() is used to create new credentials and the
EUID, UID, GID, and EGID to root and then use the commit_creds() function to
commit them. We print the changes using printk to the kernel log. The allocated
memory is freed via kfree() and we return the original execve syscall. (add insert.sh
changes here)

Part C
1. First, I made a return variable to hold the original getdents64 syscall, along with a

linux_dirent64 struct, an unsigned long for an offset and string (list of chars) as the
buffer to keep track of the directory entries. After we set our return value to the
original getdents, we make sure that the function does not return 0 via error
handling. Afterwards, we allocate memory in kernel space for all the directory
entries in the original getdents function, then we copy the directory entries from
user space using the copy_form_user() function to copy the data into the buffer we
have made. Then we log the message that we are invoking the getdents function
with printk, so it is displayed in the kernel log. Afterwards, we iterate through the
directory entries, and we use the linux_dirent64 struct we made earlier to be able to
access the information from the directory entry, such as its name. We then print that
info back to the kernel log via printk. We use the offset variable we made earlier to
help us iterate through the entries. Finally, we free all the memory that we have
allocated and return the original getdents function. The hook function will intercept
the original getdents function when it is called and use our new_getdents function
and then afterwards resume the normal process of calling the getdents function.
(see the txt file associated with this question to see the what it looked like before we
changed it for Q23)

2. Like with for the previous question, this part starts with intercepting the original
getdents() function with our own. In this question, we also finally defined the
magic_prefix function that we have been ignoring up to this point. This lets us grab
the value that is used in our insert.sh file, dubbed our “special prefix”. Next, we hook
the original getdents function with our new_getdents function so that we can make
our necessary changes. In the new getdents function, we first make a bunch of
variables, including three linux_dirent structs, one to keep track of the user space
directory, and the other two will be used to help us traverse the and make changes
to the list of directory entries. Then, like the previous version we made, we grab the
original value of the original getdents function, make sure it is not empty, and
allocate memory in kernel space for when we need to iterate through the directory
entries. Again, like the previous iteration, we use the copy_from_user() function to
get the directory entries into kernel buffer. We then iterate through the directory
entries and check if files with the suffix exist, if they do, then we remove that entry.
After, we then free the memory we have allocated and then we return the original
getdents function. In the insert.sh function, we have edited it to now grab the magic
prefix.

