

Comp 4108

Assignment 2

Alexandre Berube (101054165)

October 15, 2024

Part A

3) For this question, I first went to the /proc/ file, and then used the following to search for
the address for /proc/kallsyms :

This ends up creating an incredibly long output, so I had to redo the command, using grep
this time to find only the results that actually had sys_call_table, which resulted in the
following command:

The following 3 lines were the output for the above command as well. I think the top and
bottom might have to do with if we were using a 32 bit system perhaps, though I am not
sure and am opting to primarily use the middle one for this assignment.

So, the address of the sys_call_table is ffffffffa9e013c0 in this case.

4) For this question, I had to find the appropriate function (kallsyms_lookup_name()) where
we are supposed to input the symbol for the right address found in the previous question.
Here is the code block where this takes place and the symbol has been input into the
appropriate spot:

5) I was able to confirm the rootkit works by running the command make:

This resulted in the following file structure being created:

As stated in the assignment spec, the few warnings about defined but unused
variables are meant to be there.

6) I was able to use ./insert.sh as the root user in order to insert the rootkit framework
using the following:

Then, we can verify that it has been added by using lsmod, which shows rootkit at
the very top of the list since it is the most recent addition (entire list not included):

7) For this question now, we run the command ./eject.sh as the root user, and the confirm
that the rootkit module was removed by again checking with lsmod. These steps are all
seen in this screenshot:

8) For this question, I am looking for all the sections of the rootkit.c file that have TODO in
the comments. The first is to uncomment the following line:

Then, this function call to unprotect_memory() is added:

Followed by this step:

The following function call to protect_memory() is added:

Then further down, we do a few similar steps, again adding the unprotect_memory()
function call here:

Then we uncomment the below line:

Then finally we add another use of the protect_memory() function here:

After running the following command:

We can see the following lines show up at the bottom of the resulting information,
indicating the success of the open() hook:

9) I think principle P4, Complete Mediation, can help mitigate rootkits. This is because the
principle is concerned with the premise that to access objects on a system one must have
their authority verified. A rootkit is meant to bypass this verification initially into the
system, but if this verification is needed every time to access objects, then the
effectiveness of said rootkit will be drastically reduced.

I also think P5, Isolated-Compartments, is applicable to help mitigate rootkits. If system
components are more isolated, then it is harder to access the whole system just because
you have access to a part of it which can undermine the use of a rootkit by limiting the
range of objects that it can have access to in the first place.

Part B

1)

