
Part A - Set up

3. The address of the sys_call_table symbol inspecting /proc/kallsyms is
ffffffff84a013c0. By using grep.

4. I changed the placeholder “[NEEDED FOR PART A]” to “sys_call_table”

5. After running make, we can confirm that we built the rootkit framework

6. After inserting the rootkit module by running ./insert.sh as root, we can ensure it was
inserted by running lsmod | grep rootkit which showed is that there is an entry for
our rootkit in the list of loaded kernel modules (shows it was inserted successfully). Then to
check the syslog, I ran dmesg | tail to see if the latest syslog entries has any that are
related to the rootkit (rootkit module initializing. / rootkit module is
loaded!).

7. After removing the rootkit module by running ./eject.sh as root, we can ensure it was
removed by running lsmod | grep rootkit which showed is that there is no longer an
entry for our rootkit in the list of loaded kernel modules (shows it was removed successfully).
Then to check the syslog, I ran dmesg | tail to see if the latest syslog entries has any
that are related to the removal of the rootkit (rootkit module unloaded!/ rootkit
module is cleanup complete.).

8. After uncommenting the required code, and properly unprotecting and protecting the
memory using the unprotect_memory() and protect_memory() functions in both
init_rootkit(void) and cleanup_rootkit(void) , I rebuilt and loaded the rootkit
module and tested it with a variety of files with the suffix .txt to trigger the openat() sys
call which we can see worked in the sys log.

9. The two principles that help mitigate rootkits are P2 safe-defaults, P4 complete-mediation,
and P6 least-privilege. Safe defaults deny access by default and only letting authorized
entities to ignore this regulation. This helps rootkits since it restricts the rootkits ability to
modify the system and reducing the attack angles they can exploit. Complete mediation is
the principle that every access to each object needs to be properly authorized. This prevents
rootkits from ignoring security checks and using exploits to gain unauthorized access. Least
privilege is the principle that allocates the minimum privileges needed for a task and nothing
more. This limits the rootkit from growing its control over the system.

Part B - Backdoor

1. To do this problem, I first added a variable to store the original execve function. Then
I accepted root_uid as a kernel module parameter by using the existing code snip bit
that was used for suffix and adjusting it slightly to fit our needs.

Then I wrote my new_execve syscall function which is mainly based on openat syscall
function but removed the bulk of it and added a couple of printk statements to output the file
name and the euid.

Then in init_rootkit and cleanup_rootkit functions I added a couple of lines to store the
original functions and to hook for privilege escalation.

2. I included the header #include <linux/cred.h> so I can use perpare_kernel_cred() to
prepare credentials with root privilege and commit_creds() that commits the new
credentials (current UID and euid to root 0).

I had to update insert.sh to pass the root_uid param through insert.sh.

Part C - File Cloaking

1. I wrote the getdunts64 function that successfully prints out the name of all directory
entries.

2. As we can see in the output, after following the instructions we can see that I have
successfully validated that after inserting the kernel module the file
sys_lol_hidden.txt is no longer included in ls -la (all files hidden or not)

